Power Amplifiers

  • Fernando Gregorio
  • Gustavo González
  • Christian Schmidt
  • Juan Cousseau
Part of the Signals and Communication Technology book series (SCT)


Conventionally, the power amplifier is considered the most power demanding device in a wireless transceiver. Following this assumption, improvements in the power efficiency of the power amplifier (PA) are directly reflected in the power consumption of the overall system. Considering the power consumption of a LTE macrocell base station, the PA drains around 57% of the total power, while the baseband processing requires only 13%. However, in a femtocell, the PA consumption represents only 22% of the total power and the portion of the digital block demands 47%. For the case of power limited devices, as a LTE mobile phone, the PA dominates the overall power consumption requiring 44% of the total available power. We can infer from these values that for high/medium power systems, as macrocell base stations, the implementation of linearization techniques or peak-to-average power ratio (PAPR) reduction methods are mandatory. In that case, their implementation allows to relax the linearity constraints and improve the power efficiency. A substantial energy saving can thus be obtained in that scenario. On the other hand, for low power transceivers, the trade-off between the energy saved by optimizing the PA operation point and the energy required to implement predistortion techniques needs to be carefully evaluated. In this chapter, we address the problem of power consumption in power amplifiers and their effects over energy efficiency and performance of a wireless transceiver. The trade-off between the allowed power amplifier distortion and the system power efficiency is studied. Several nonlinear distortion compensation techniques that can be applied either in the receiver or the transmitter side are introduced and their performance is studied for several scenarios.


  1. 1.
    P.M. Lavrador, T.R. Cunha, P.M. Cabral, J.C. Pedro, The linearity-efficiency compromise. IEEE Microw. Mag. 11(5), 44–58 (2010)CrossRefGoogle Scholar
  2. 2.
    P. Kenington, High-Linearity RF Amplifier Design (Artech House, Norwood, 2000)Google Scholar
  3. 3.
    S. Cripps, Advanced Techniques in RF Power Amplifiers Design (Artech, Norwood, 2002)Google Scholar
  4. 4.
    F. Giannini, E. Limiti, P. Colantonio, High Efficiency RF & Microwave Solid State Power Amplifiers (John Wiley & Sons, Hoboken, 2009)Google Scholar
  5. 5.
    B. Berglund, T Nygren, K. Sahlman, RF multicarrier amplifier for third generation systems. Ericsson Rev. 78(4), 184–189 (2001)Google Scholar
  6. 6.
    P.K. Singya, N. Kumar, V. Bhatia, Mitigating NLD for wireless networks: effect of nonlinear power amplifiers on future wireless communication networks. IEEE Microw. Mag. 18(5), 73–90 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Joung, C.K. Ho, K. Adachi, S. Sun, A survey on power-amplifier-centric techniques for spectrum- and energy-efficient wireless communications. IEEE Commun. Surv. Tutorials 17(1), 315–333 (2015). First quarterCrossRefGoogle Scholar
  8. 8.
    A. Katz, J. Wood, D. Chokola, The evolution of PA linearization: from classic feedforward and feedback through analog and digital predistortion. IEEE Microw. Mag. 17(2), 32–40 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Wunder, R.F.H. Fischer, H. Boche, S. Litsyn, J. No, The PAPR problem in OFDM transmission: new directions for a long-lasting problem. IEEE Signal Process. Mag. 30(6), 130–144 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2001)CrossRefGoogle Scholar
  11. 11.
    D. Morgan, Z. Ma, J. Kim, M. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    P. Jaraut, M. Rawat, P. Roblin, Digital predistortion technique for low resource consumption using carrier aggregated 4G/5G signals. IET Microwaves Antennas Propag. 13(2), 197–207 (2019)CrossRefGoogle Scholar
  13. 13.
    O. Hammi, S. Buomaiza, F. Ghannouchi, On the robustness of digital predistortion function synthesis and average power tracking for highly nonlinear power amplifiers. IEEE Trans. Microwave Theory Tech. 55(6), 1382–1389 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Mann, M. Beach, P. Warr, J. McGeehan, Increasing the talk-time of mobile radios with efficient linear transmitter architectures. Electron. Commun. Eng. J. 13(2), 65–76 (2001)CrossRefGoogle Scholar
  15. 15.
    E. Aschbacher, M. Rupp, Modeling and identification of a nonlinear power-amplifier with memory for nonlinear digital adaptive pre-distortion, in Proceedings of IEEE Signal Processing Advances in Wireless Communications, SPAWC 2003, Rome, vol. 1 (2003), pp. 658–662Google Scholar
  16. 16.
    L. Guan, A. Zhu, Green communications: digital predistortion for wideband RF power amplifiers. IEEE Microw. Mag. 15(7), 84–99 (2014)CrossRefGoogle Scholar
  17. 17.
    C. Eun, E.J. Powers, A new Volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. 45(1), 223–227 (1997)CrossRefGoogle Scholar
  18. 18.
    L. Ding, G.T. Zhou, D.R. Morgan, Z. Ma, J.S. Kenney, J. Kim, C.R. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Gilabert, G. Montoro, E. Bertran, On the Wiener and Hammerstein models for power amplifier predistortion, in Proceedings of Asia-Pacific Microwave Conference (APMC) (2005)Google Scholar
  20. 20.
    F. Gregorio, S. Werner, J. Cousseau, T. Laakso, Receiver cancellation technique for nonlinear power amplifier distortion in SDMA-OFDM systems. IEEE Trans. Vehic. Tech. 56(5) Part I, 2499–2516 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Gregorio, Analysis and compensation of nonlinear power amplifier effects in multi-antenna OFDM systems, Ph.D. Thesis, Helsinki University of Technology (2007)Google Scholar
  22. 22.
    E. Olfat, M. Bengtsson, Joint channel and clipping level estimation for OFDM in IoT-based networks. IEEE Trans. Signal Process. 65(18), 4902–4911 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    L.D. Quach, S.P. Stapleton, A postdistortion receiver for mobile communications. IEEE Trans. Veh. Technol. 42(4), 604–616 (1993)CrossRefGoogle Scholar
  24. 24.
    S.P. Stapleton, L. Quach, Reduction of adjacent channel interference using postdistortion, in Proceedings of IEEE Vehicular Technology Conference, VTC’02-Fall, Vancouver, vol. 2 (1992), pp. 915–918Google Scholar
  25. 25.
    C.H. Lee, V. Postoyalko, T. O’Farrell, Enhanced performance of ROF link for cellular mobile systems using postdistortion compensation, in Proceedings of IEEE Personal, Indoor and Mobile Radio Communications, PIMRC 2004, Barcelona, vol. 4 (2004), pp. 2772–2776Google Scholar
  26. 26.
    J. Macdonald, Nonlinear distortion reduction by complementary distortion. IRE Trans. Audio 7(5), 128–133 (1959)CrossRefGoogle Scholar
  27. 27.
    M. Aziz, M.V. Amiri, M. Helaoui, F.M. Ghannouchi, Statistics-based approach for blind post-compensation of modulator’s imperfections and power amplifier nonlinearity. IEEE Trans. Circuits Syst. Regul. Pap. 66(3), 1063–1075 (2019)CrossRefGoogle Scholar
  28. 28.
    D.D. Falconer, Adaptive equalization of channel nonlinearities in QAM data transmission systems. Bell Syst. Tech. 57, 2589–2611 (1978)zbMATHCrossRefGoogle Scholar
  29. 29.
    S. Benedetto, E. Biglieri, Nonlinear equalization of digital satellite channels. IEEE J. Sel. Areas Commun. 1(1), 57–62 (1983)CrossRefGoogle Scholar
  30. 30.
    S. Benedetto, A. Gersho, R.D. Gitlin, T.L. Lim, Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission. IEEE J. Sel. Areas Commun. 2(5), 765–777 (1984)CrossRefGoogle Scholar
  31. 31.
    D. Kim, G.L. Stuber, Clipping noise mitigation for OFDM by decision-aided reconstruction. IEEE Commun. Lett. 3(1), 4–6 (1999)CrossRefGoogle Scholar
  32. 32.
    J. Tellado, L.M.C. Hoo, J.M. Cioffi, Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding. IEEE Trans. Commun. 51, 218–228 (2003)CrossRefGoogle Scholar
  33. 33.
    Y. Xiao, S. Li, X. Lei, Y. Tang, Clipping noise mitigation for channel estimation in OFDM systems. IEEE Commun. Lett. 10(6), 474–476 (2006)CrossRefGoogle Scholar
  34. 34.
    H. Chen, A.M. Haimovich, Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Commun. Lett. 7(7), 305–307 (2003)CrossRefGoogle Scholar
  35. 35.
    R. AliHemmati, P. Azmi, Iterative reconstruction-based method for clipping noise suppression in OFDM systems. IEE Commun. Proc.152(4), 452–456 (2005)zbMATHCrossRefGoogle Scholar
  36. 36.
    S.V. Zhidkov, Receiver synthesis for nonlinearly amplified OFDM signal, in Proceedings of IEEE Workshop on Signal Processing Systems, SIPS 2003, Seoul (2003), pp. 387–392Google Scholar
  37. 37.
    C.A.R. Fernandes, J.C.M. Mota, G. Favier, Analysis and power diversity-based cancellation of nonlinear distortions in OFDM systems. IEEE Trans. Signal Process.60(7), 3520–3531 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    V. del Razo, T. Riihonen, F. Gregorio, S. Werner, R. Wichman, Nonlinear amplifier distortion in cooperative amplify-and-forward OFDM systems, in 2009 IEEE Wireless Communications and Networking Conference (2009), pp. 1–5Google Scholar
  39. 39.
    H. Bouhadda, R. Zayani, H. Shaiek, D. Roviras, R. Bouallegue, Iterative receiver cancellation of nonlinear power amplifier distortion in FBMC/OQAM system, in 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2015), pp. 691–695Google Scholar
  40. 40.
    A.S. Tehrani, H. Cao, A. Behravan, T. Eriksson, C. Fager, Successive cancellation of power amplifier distortion for multiuser detection, in 2010 IEEE 72nd Vehicular Technology Conference – Fall (2010), pp. 1–5Google Scholar
  41. 41.
    Z. Alina, O. Amrani, On digital post-distortion techniques. IEEE Trans. Signal Process.64(3), 603–614 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    F.H. Gregorio, S. Werner, J. Cousseau, J. Figueroa, R. Wichman, Receiver-side nonlinearities mitigation using an extended iterative decision-based technique. Signal Proc. 91(8), 2042–2056 (2011)zbMATHCrossRefGoogle Scholar
  43. 43.
    J.K. Cavers, Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Trans. Veh. Technol. (39)(4), 374–382 (2000)CrossRefGoogle Scholar
  44. 44.
    A.A.M. Saleh, J. Salz, Adaptive linearization of power amplifiers in digital radio systems. Bell Syst. Tech. J. 62(4), 1019–1033 (1983)CrossRefGoogle Scholar
  45. 45.
    A.N. D’Andrea, V. Lottici, R. Reggiannini, Nonlinear predistortion of OFDM signals over frequency-selective fading channels. IEEE Trans. Commun. 49(5), 837–843 (2001)zbMATHCrossRefGoogle Scholar
  46. 46.
    M. Faulkner, M. Johansson, Adaptive linearization using predistortion-experimental results. IEEE Trans. Veh. Technol. 43(2), 323–332 (1994)CrossRefGoogle Scholar
  47. 47.
    M.Y. Cheong, S. Werner, M.J. Bruno, J.L. Figueroa, J.E. Cousseau, R. Wichman, Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory. IEEE Trans. Circuits Syst. Regul. Pap. 59(7), 1519–1532 (2012)MathSciNetCrossRefGoogle Scholar
  48. 48.
    J.E. Cousseau, J.L. Figueroa, S. Werner, T.I. Laakso, Efficient nonlinear wiener model identification using a complex-valued simplicial canonical piecewise linear filter. IEEE Trans. Signal Process. 55(5), 1780–1792 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Y. Guo, J.R. Cavallaro, Enhanced power efficiency of mobile OFDM radio using predistortion and post-compensation, in Proceedings of IEEE Vehicular Technology Conference, VTC’02-Fall, Vancouver, vol. 1 (2002), pp. 214–218Google Scholar
  50. 50.
    M.Y. Cheong, S. Werner, T.I. Laakso, Design of predistorters for power amplifiers in future mobile communications systems, in Nordic Signal Processing Symposium NORSIG’04, Espoo (2004)Google Scholar
  51. 51.
    H.W. Kang, Y.S. Cho, D.H. Youn, On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter. IEEE Trans. Commun. 47(4), 522–526 (1999)CrossRefGoogle Scholar
  52. 52.
    M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (J. Wiley Sons, Hoboken, 1980)Google Scholar
  53. 53.
    K.F. To, P.C. Ching, K.M. Wong, Compensation of amplifier nonlinearities on wavelet packet division multiplexing, in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing, ICASSP’01, Utah, vol. 4 (2001), pp. 2669–2672Google Scholar
  54. 54.
    J. Tsimbinos, K.V. Lever, Nonlinear system compensation based on orthogonal polynomial inverses. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48(4), 406–417 (2006)zbMATHCrossRefGoogle Scholar
  55. 55.
    C.H. Tseng, E.J. Powers, Nonlinear channel equalization in digital satellite systems, in Proceedings of IEEE Global Telecommunications Conference, GLOBECOM 1993, Houston, vol. 1 (1993), pp. 1639–1643Google Scholar
  56. 56.
    E. Biglieri, S. Barberis, M. Catena, Analysis and compensation of nonlinearities in digital transmission systems. IEEE J. Sel. Areas Commun.6(1), 42–51 (1988)CrossRefGoogle Scholar
  57. 57.
    H.W. Kang, Y.S. Cho, D.H. Youn, Adaptive precompensation of Wiener systems. IEEE Trans. Signal Process. 46(10), 2825–2829 (1998)CrossRefGoogle Scholar
  58. 58.
    T. Liu, S. Boumaiza, F.M. Ghannouchi, Pre-compensation for the dynamic nonlinearity of wideband wireless transmitters using augmented Wiener predistorters, in Proceedings of Asia-Pacific Microwave Conference, APMC 2005, Suzhou (2005)Google Scholar
  59. 59.
    T. Liu, S. Boumaiza, F.M. Ghannouchi, Identification and pre-compensation of the electrical memory effects in wireless transceivers, in Proceedings of IEEE Radio and Wireless Symposium, San Diego (2006), pp. 535–538Google Scholar
  60. 60.
    R. Raich, H. Qian, G. T. Zhou, Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Trans. Veh. Technol. 53(5), 1468–1479 (2004)CrossRefGoogle Scholar
  61. 61.
    J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. IEE Electronics Lett. 37, 1417–1418 (2001)CrossRefGoogle Scholar
  62. 62.
    Y. Liu, J. Zhou, W. Chen, B. Zhou, A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers. IEEE Trans. Ind. Electron. 61(5), 2389–2401 (2014)CrossRefGoogle Scholar
  63. 63.
    N. Kelly, W. Cao, A. Zhu, Preparing linearity and efficiency for 5G: digital predistortion for dual-band Doherty power amplifiers with mixed-mode carrier aggregation. IEEE Microw. Mag. 18(1), 76–84 (2017)CrossRefGoogle Scholar
  64. 64.
    S. Zhang, W. Chen, Z. Feng, Low sampling rate digital predistortion of power amplifier assisted by bandpass RF filter, in 2012 Asia Pacific Microwave Conference Proceedings (2012), pp. 962–964Google Scholar
  65. 65.
    C. Nader, W. Van Moer, K. Barbe, N. Bjorsell, P. Handel, Harmonic sampling and reconstruction of wideband undersampled waveforms: breaking the code. IEEE Trans. Microwave Theory Tech. 59(11), 2961–2969 (2011)CrossRefGoogle Scholar
  66. 66.
    Q. Zhang, Y. Liu, J. Zhou, W. Chen, A complexity-reduced band-limited memory polynomial behavioral model for wideband power amplifier, in 2015 IEEE International Wireless Symposium (IWS 2015) (2015), pp. 1–4Google Scholar
  67. 67.
    D. Dardari, V. Tralli, A. Vaccari, A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun. 48(10), 1755–1764 (2000)CrossRefGoogle Scholar
  68. 68.
    A.A.M. Saleh, Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. 29(11), 1715–1720 (1981)CrossRefGoogle Scholar
  69. 69.
    L. Ding, G. Zhou, D. Morgan, Z. Ma, J. Kenney, J. Kim, C. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)CrossRefGoogle Scholar
  70. 70.
    K. Gharaibeh, Behavioral modeling of nonlinear power amplifiers using threshold decomposition based piecewise linear approximation. IEEE Radio Wirel. Symp. 755–758 (2008)Google Scholar
  71. 71.
    A. Zhu, P. Draxler, C. Hsia, T. Brazil, D. Kimball, P. Asbeck, Digital pre distortion for envelope tracking power amplifiers using decomposed piecewise Volterra series. IEEE Trans. Microwave Theory Tech. 56(10), 2237–2247 (2008)CrossRefGoogle Scholar
  72. 72.
    C. Fager, J.C. Pedro, N. Borges de Carvalho, H. Zirath, Prediction of IMD in LDMOS transistor amplifiers using a new large signal model. IEEE Trans. MTT 50(12), 2834–2842 (2002)CrossRefGoogle Scholar
  73. 73.
    C. Fager, J.C. Pedro, N. Borges de Carvalho, H. Zirath, Intermodulation distortion behavior in LDMOS transistor amplifiers. IEEE MTT Digest. 131–134 (2002)Google Scholar
  74. 74.
    C. Eun, E.J. Powers, A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system, in IEEE GLOBECOM 95, vol. 1 (1995), pp. 152–156Google Scholar
  75. 75.
    G. Golub, C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1993)zbMATHGoogle Scholar
  76. 76.
    A.V. Trushkin, On the design of an optimal quantizer. IEEE Trans. Inf. Theory 39(4), 1180–1194 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    C. Hsu, H. Liao, PAPR reduction using the combination of precoding and Mu-Law companding techniques for OFDM systems, in 2012 IEEE 11th International Conference on Signal Processing, vol. 1 (2012), pp. 1–4Google Scholar
  78. 78.
    A. Hekkala, A. Kotelba, M. Lasanen, Compensation of linear and nonlinear distortions in envelope tracking amplifier, in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (2008), pp. 1–5Google Scholar
  79. 79.
    A. Kotelba, A. Hekkala, M. Lasanen, Compensation of time misalignment between input signals in envelope-tracking amplifiers, in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (2008), pp. 1–5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fernando Gregorio
    • 1
  • Gustavo González
    • 1
  • Christian Schmidt
    • 1
  • Juan Cousseau
    • 1
  1. 1.Dpto. de Ing. Eléctrica y de Computadoras Universidad Nacional del Sur (UNS), Instituto de Inv. en Ing. Eléctrica “Alfredo Desages” (IIIE), UNS-CONICETBahía BlancaArgentina

Personalised recommendations