Advertisement

Digital Block and RF Front-End Models

  • Fernando Gregorio
  • Gustavo González
  • Christian Schmidt
  • Juan Cousseau
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

In order to reduce the implementation cost, most of the signal processing in the transceiver is carried out in the digital domain. However, the RF front-end components usually represent a significant part of the cost and power consumption, and determine the overall performance of the radio system. In this chapter, we present a review of the most significant front-end impairments that affect the performance of modern wireless communication systems. At the transmitter side, we consider power amplifier (PA) nonlinear distortion and the phase and amplitude imbalances of the mixer. At the receiver, we include the phase noise of the local oscillator, and the analog-to-digital converter (ADC) quantization noise and nonlinear distortion. These models will be used in the following chapters to introduce compensation techniques that improve system performance.

References

  1. 1.
    M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Gregorio, Analysis and Compensation of Nonlinear Power Amplifier Effects in Multi-Antenna OFDM Systems, Ph.D. thesis (Helsinki University of Technology, Helsinki, 2007)Google Scholar
  3. 3.
    F. Gregorio, J. Cousseau, S. Werner, T. Riihonen, R. Wichman, EVM analysis for broadband OFDM direct-conversion transmitters. IEEE Trans. Veh. Technol. 62(7), 3443–3451 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Zhao, R.J. Baxley, Error vector magnitude analysis for OFDM systems, in Signals, Systems and Computers, (ASILOMAR), 2006 (2006), pp. 1830–1834Google Scholar
  5. 5.
    R. Gomes, L. Sismeiro, C. Ribeiro, T.R. Fernandes, M.G. Sanchéz, A. Hammoudeh, R.F.S. Caldeirinha, Will COTS RF front-ends really cope with 5G requirements at mmWave? IEEE Access 6, 38745–38769 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Mammela, A. Anttonen, Why will computing power need particular attention in future wireless devices? IEEE Circuits Syst. Mag. 17(1), 12–26 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Molisch, Wireless Communications, 2nd edn. (Wiley, Chichester, 2011)Google Scholar
  8. 8.
    J. Wood, Behavioral Modeling and Linearization of Power Amplifiers (Artech House, London, 2014)Google Scholar
  9. 9.
    ETSI, LTE; evolved universal terrestrial radio access (E-UTRA); base station (BS) conformance testing, in 3GPP TS 36.141 version 12.6.0 Release 1 (2015)Google Scholar
  10. 10.
    D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  11. 11.
    L. Hanzo, W. Webb, T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation (Wiley, Chichester, 2000)Google Scholar
  12. 12.
    A. Pandharipande, Principles of OFDM. IEEE Potentials 21(12), 16–19 (2002)CrossRefGoogle Scholar
  13. 13.
    J. Vuolevi, T. Rahkonen, Distortion in RF Power Amplifiers (Artech House, Norwood, 2003)Google Scholar
  14. 14.
    R. Prasad, OFDM for Wireless Communications Systems (Artech House, Boston, 2004)Google Scholar
  15. 15.
    H. Ochiai, H. Imai, On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Trans. Commun. 49(2), 282–289 (2001)CrossRefGoogle Scholar
  16. 16.
    R. Van Nee, A. De Wild, Reducing the peak-to-average power ratio of OFDM, in Proceeding IEEE Vehicular Technology Conference, VTC’98, vol 3 (IEEE, Ottawa, 1998), pp. 2072–2076Google Scholar
  17. 17.
    R.J. Baxley, G.T. Zhou, Power savings analysis of peak-to-average power ratio in OFDM. IEEE Trans. Consum. Electron. 50(3), 792–798 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Boumaiza, F.M. Ghannouchi, Thermal memory effects modeling and compensation in RF power amplifiers and predistortion linearizers. IEEE Trans. Microwave Theory Tech. 51(12), 2427–2433 (2003)CrossRefGoogle Scholar
  19. 19.
    A.A.M. Saleh, Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. 29(11), 1715–1720 (1981)CrossRefGoogle Scholar
  20. 20.
    S. Cripps, Advanced Techniques in RF Power Amplifiers Design (Artech, Boston, 2002)Google Scholar
  21. 21.
    J.J. Bussgang, Cross correlation function of amplitude-distorted Gaussian input signals, in Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, Technical Report 216, vol 3 (1952)Google Scholar
  22. 22.
    M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Wiley, Hoboken, 1980)zbMATHGoogle Scholar
  23. 23.
    E. Aschbacher, M. Rupp, Modeling and identification of a nonlinear power-amplifier with memory for nonlinear digital adaptive pre-distortion, in Proceeding IEEE Signal Processing Advances in Wireless Communications, SPAWC 2003, vol 1 (IEEE, Rome, 2003), pp. 658–662Google Scholar
  24. 24.
    P. Crama, J. Schoukens, Initial estimates of Wiener and Hammerstein systems using multisine excitation. IEEE Trans. Instrum. Meas. 50(6), 1791–1795 (2001)CrossRefGoogle Scholar
  25. 25.
    O. Hammi, F. Ghannouchi, B. Vassilakis, A compact envelope memory polynomial for RF transmitters modeling with application to baseband and RF digital pre distortion. IEEE Microwave Wireless Compon. Lett. 18(5) (2008)CrossRefGoogle Scholar
  26. 26.
    R. Raich, H. Qian, G.T. Zhou, Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Trans. Veh. Technol. 53(5), 1468–1479 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Morgan, Z. Ma, J. Kim, M. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006)CrossRefGoogle Scholar
  28. 28.
    T. Rappaport, R.W. Heath Jr., R.C. Daniels, J.N. Murdock, Millimeter Wave Wireless Communications (Pearson/Prentice Hall, New Jersey, 2014)Google Scholar
  29. 29.
    C.-L. Liu, Impacts of I/Q imbalance on QPSK-OFDM-QAM detection. IEEE Trans. Consum. Electron. 44(3), 984–989 (1998)CrossRefGoogle Scholar
  30. 30.
    A. Tarighat, R. Bagheri, A.H. Sayed, Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans. Signal Process. 53(8), 3257–3268 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.A. Ali, M. Arif, W. Kumar, Joint CIR, CFO, DCO and FI/FS Rx IQ imbalance estimation. IET Commun. 10(15), 2025–2033 (2016)Google Scholar
  32. 32.
    J. Wang, H. Yu, Y. Wu, F. Shu, J. Wang, R. Chen, J. Li, Pilot optimization and power allocation for OFDM-Based full-duplex relay networks with IQ-Imbalances. IEEE Access 5, 24344–24352 (2017)CrossRefGoogle Scholar
  33. 33.
    D. Korpi, L. Anttila, V. Syrjälä, M. Valkama, Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE J. Sel. Areas Commun. 32(9), 1674–1687 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Stefanatos, F. Foukalas, T. Khattab, On the achievable rates of OFDM with common phase error compensation in phase noise channels. IEEE Trans. Commun. 65(8), 3509–3521 (2017)Google Scholar
  35. 35.
    C. Muschallik, Influence of RF oscillators on an OFDM signal. IEEE Trans. Consum. Electron. 41(3), 592–603 (1995)CrossRefGoogle Scholar
  36. 36.
    L. Piazzo, P. Mandarini, Analysis of phase noise effects in OFDM modems. IEEE Trans. Commun. 50(10), 1696–1705 (2003)CrossRefGoogle Scholar
  37. 37.
    G. Liu, W. Zhu, Phase noise effects and mitigation in OFDM systems over Rayleigh fading channels. Wireless Pers. Commun. Springer 41(2), 243–258 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Leshem, M. Yemini, Phase noise compensation for OFDM systems. IEEE Trans. Signal Process. 65(21), 5675–5686 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Stott, The effects of phase noise in COFDM, in BBC Research Development Technical Review, Summer (1998)Google Scholar
  40. 40.
    K. Fazel, S. Kaiser, Multi-Carrier and Spread Spectrum Systems. From OFDM and MC-CDMA to LTE and WiMAX, 2nd edn. (Wiley, Hoboken , 2008)Google Scholar
  41. 41.
    J. Tubbax, B. Come, L. Van der Perre, S. Donnay, M. Engels, H. De Man, M. Moonen, Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Trans. Wireless Commun. 4(3), 872–877 (2005)CrossRefGoogle Scholar
  42. 42.
    J.L. Stensby, Phase-Locked Loops. Theory and Applications (CRC Press, Boca Raton, 1997)Google Scholar
  43. 43.
    L. Fanori, P. Andreani, Highly efficient class-C CMOS VCOS, including a comparison with class-B VCOS. IEEE J. Solid-State Circuits 48(7), 1730–1740 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Andersson, L. Sundstrom, S. Mattisson, Design considerations for 5G mm-wave receivers, in 2017 Fifth International Workshop on Cloud Technologies and Energy Efficiency in Mobile Communication Networks (CLEEN) (2017), pp. 1–5.Google Scholar
  45. 45.
    Ericsson, Further elaboration on mm-wave phase noise modelling, in 3GPP TSG-RAN WG4, R4-1703087 (2017)Google Scholar
  46. 46.
    J. Vihriälä, A.A. Zaidi, V. Venkatasubramanian, N. He, E. Tiirola, J. Medbo, E. Lähetkangas, K. Werner, K. Pajukoski, A. Cedergren, R. Baldemair, Numerology and frame structure for 5G radio access, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2016), pp. 1–5Google Scholar
  47. 47.
    A.A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom, J. Medbo, C. Kilinc, I. Da Silva, Waveform and numerology to support 5G services and requirements. IEEE Commun. Mag. 54(11), 90–98 (2016)CrossRefGoogle Scholar
  48. 48.
    R. Van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic, Dordrecht, 2003)CrossRefGoogle Scholar
  49. 49.
    B. Razavi, The current-steering DAC [A circuit for all seasons]. IEEE Solid-State Circuits Magazine10(1), 11–15 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fernando Gregorio
    • 1
  • Gustavo González
    • 1
  • Christian Schmidt
    • 1
  • Juan Cousseau
    • 1
  1. 1.Dpto. de Ing. Eléctrica y de Computadoras Universidad Nacional del Sur (UNS), Instituto de Inv. en Ing. Eléctrica “Alfredo Desages” (IIIE), UNS-CONICETBahía BlancaArgentina

Personalised recommendations