Advertisement

A Formally Verified Algebraic Approach for Dynamic Reliability Block Diagrams

  • Yassmeen ElderhalliEmail author
  • Osman Hasan
  • Sofiène Tahar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11852)

Abstract

Dynamic reliability block diagrams (DRBDs) are introduced to overcome the modeling limitations of traditional reliability block diagrams, such as the inability to capture redundant components. However, so far there is no algebraic framework that allows conducting the analysis of a given DRBD based on its structure function. In this paper, we propose a new algebra to formally express the structure function and the reliability of a DRBD with spare constructs based on basic system blocks and newly introduced DRBD operators. We present several simplification properties that allow reducing the structure of a given DRBD. We formalize the proposed algebra in higher-order logic to ensure its soundness, and formally verify its corresponding properties using the HOL4 theorem prover. This includes formally verifying generic reliability expressions of the spare costruct, series, parallel and deeper structures in an extensible manner that allows verifying the reliability of complex systems. Finally, we demonstrate the applicability of this algebra by formally analyzing the reliability of two real-world systems in HOL4.

Keywords

Dynamic reliability block diagrams Algebra Theorem proving HOL4 

References

  1. 1.
    Ahmed, W., Hasan, O., Tahar, S.: Formalization of reliability block diagrams in higher-order logic. J. Appl. Logic 18, 19–41 (2016).  https://doi.org/10.1016/j.jal.2016.05.007MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Altby, A., Majdandzic, D.: Design and Implementation of a Fault-tolerant Drive-by-wire System. Master’s thesis, Chalmers University of Technology, Sweden (2014)Google Scholar
  3. 3.
    Bistouni, F., Jahanshahi, M.: Analyzing the reliability of shuffle-exchange networks using reliability block diagrams. Reliab. Eng. Syst. Saf. 132, 97–106 (2014).  https://doi.org/10.1016/j.ress.2014.07.012CrossRefGoogle Scholar
  4. 4.
    Distefano, S.: System Dependability and Performances: Techniques, Methodologies and Tools. Ph.D. thesis, University of Messina, Italy (2005)Google Scholar
  5. 5.
    Elderhalli, Y.: DRBD Formal Analysis: HOL4 Script (2019). http://hvg.ece.concordia.ca/code/hol/DRBD/index.php
  6. 6.
    Elderhalli, Y., Hasan, O., Tahar, S.: A Formally Verified HOL Algebra for Dynamic Reliability Block Diagrams. Technical report, Concordia University, Canada (2019). http://arxiv.org/abs/1908.01930
  7. 7.
    Elderhalli, Y., Ahmad, W., Hasan, O., Tahar, S.: Probabilistic analysis of dynamic fault trees using HOL theorem proving. J. Appl. Logics 2631(3), 469 (2019)Google Scholar
  8. 8.
    Hasan, O., Ahmed, W., Tahar, S., Hamdi, M.S.: Reliability block diagrams based analysis: a survey. In: Numerical Analysis and Applied Maths, vol. 1648, pp. 850129.1-4 (2015).  https://doi.org/10.1063/1.4913184
  9. 9.
  10. 10.
    Merle, G.: Algebraic Modelling of Dynamic Fault Trees, Contribution to Qualitative and Quantitative Analysis. Ph.D. thesis, ENS, France (2010)Google Scholar
  11. 11.
    Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 233–248. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22863-6_18CrossRefGoogle Scholar
  12. 12.
    Qasim, M., Hasan, O., Elleuch, M., Tahar, S.: Formalization of normal random variables in HOL. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 44–59. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42547-4_4CrossRefGoogle Scholar
  13. 13.
    Robidoux, R., Xu, H., Xing, L., Zhou, M.: Automated modeling of dynamic reliability block diagrams using colored petri nets. IEEE Trans. Syst. Man Cybern. 40(2), 337 (2010).  https://doi.org/10.1109/TSMCA.2009.2034837CrossRefGoogle Scholar
  14. 14.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling. Anal. Tools. Comput. Sci. Rev. 15–16, 29–62 (2015).  https://doi.org/10.1016/j.cosrev.2015.03.001MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Smith, G.: The Object-Z Specification Language, vol. 1. Springer, New York (2012)zbMATHGoogle Scholar
  16. 16.
    Xu, H., Xing, L.: Formal semantics and verification of dynamic reliability block diagrams for system reliability modeling. In: Software Engineering and Applications, pp. 155–162 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yassmeen Elderhalli
    • 1
    Email author
  • Osman Hasan
    • 1
  • Sofiène Tahar
    • 1
  1. 1.Electrical and Computer EngineeringConcordia UniversityMontréalCanada

Personalised recommendations