Advertisement

Multiple Operator Integrals

  • Anna Skripka
  • Anna Tomskova
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2250)

Abstract

Theory of multiple operator integrals arose as an extension of the double operator integration theory to the settings that could not be encompassed by the latter constructions. In particular, multilinear transformations naturally arise in finding summable approximations to operator functions in the case of nontrace class perturbations, as we will see in the next chapter. The first attempts to construct suitable multilinear extensions of double operator integrals were made in Solomjak and Sten’kin (Linear Operators and Operator Equations. Problems in Mathematical Analysis. Izdat Leningrad University, Leningrad, pp. 122–134, 1969), Pavlov (Linear Operators and Operator Equations. Problems in Mathematical Analysis. Izdat Leningrad University, Leningrad, pp. 99–122, 1969), Sten’kin (Izv Vysš Učebn Zaved Mat 179(4):102–115, 1977); the more recent approaches important for applications are due to Peller (J Funct Anal 233(2):515–544, 2006), Azamov et al. (Can J Math 61(2):241–263, 2009), Potapov et al. (Invent Math 193(3):501–538, 2013), Coine et al. (When do triple operator integrals take value in the trace class? arXiv:1706.01662). In this chapter we discuss the main constructions and properties of multiple operator integrals suitable for applications.

References

  1. 4.
    A.B. Aleksandrov, V.V. Peller, Functions of operators under perturbations of class \({\mathcal {S}}^p\). J. Funct. Anal. 258(11), 3675–3724 (2010)Google Scholar
  2. 6.
    A.B. Aleksandrov, V.V. Peller, Functions of perturbed dissipative operators. Algebra i Analiz 23(2), 9–51 (2011). Translation: St. Petersburg Math. J. 23(2), 209–238 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 11.
    A.B. Aleksandrov, V.V. Peller, Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals. Bull. Lond. Math. Soc. 49, 463–479 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 14.
    A.B. Aleksandrov, F.L. Nazarov, V.V. Peller, Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals. Adv. Math. 295, 1–52 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 24.
    N.A. Azamov, A.L. Carey, P.G. Dodds, F.A. Sukochev, Operator integrals, spectral shift, and spectral flow. Can. J. Math. 61(2), 241–263 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 28.
    C. Bennett, R. Sharpley, Interpolation of Operators. Pure and Applied Mathematics, vol. 129 (Academic, Boston, 1988)zbMATHGoogle Scholar
  7. 30.
    J. Bergh, J. Löfström, Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223 (Springer, Berlin, 1976)Google Scholar
  8. 31.
    A.T. Bernardino, A simple natural approach to the uniform boundedness principle for multilinear mappings. Proyecciones J. Math. 28(3), 203–207 (2009)MathSciNetzbMATHGoogle Scholar
  9. 51.
    V.I. Chilin, F.A. Sukochev, Weak convergence in non-commutative symmetric spaces. J. Oper. Theory 31(1), 35–65 (1994)MathSciNetzbMATHGoogle Scholar
  10. 52.
    C. Coine, Perturbation theory and higher order \({\mathcal {S}}^p\)-differentiability of operator functions (2019). arXiv:1906.05585Google Scholar
  11. 53.
    C. Coine, C. Le Merdy, D. Potapov, F. Sukochev, A. Tomskova, Resolution of Peller’s problem concerning Koplienko-Neidhardt trace formula. Proc. Lond. Math. Soc. (3) 113(2), 113–139 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 55.
    C. Coine, C. Le Merdy, A. Skripka, F. Sukochev, Higher order \({\mathcal {S}}^2\)-differentiability and application to Koplienko trace formula. J. Funct. Anal. 276(10), 3170–3204 (2019)Google Scholar
  13. 56.
    C. Coine, C. Le Merdy, F. Sukochev, When do triple operator integrals take value in the trace class? (2019). arXiv:1706.01662Google Scholar
  14. 63.
    B. de Pagter, F. Sukochev, Differentiation of operator functions in non-commutative Lp-spaces. J. Funct. Anal. 212(1), 28–75 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 66.
    J. Diestel, J.J. Uhl, Vector Measures. Mathematical Surveys, no. 15 (American Mathematical Society, Providence, 1977)Google Scholar
  16. 73.
    K. Dykema, N.J. Kalton, Sums of commutators in ideals and modules of type II factors. Ann. Inst. Fourier (Grenoble) 55(3), 931–971 (2005)Google Scholar
  17. 78.
    E.G. Effros, Z.-J. Ruan, Multivariable Multipliers for Groups and Their Operator Algebras. Proceedings of Symposia in Pure Mathematics, vol. 51, Part 1 (American Mathematical Society, Providence, 1990), pp. 197–218Google Scholar
  18. 85.
    I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (American Mathematical Society, Providence, 1969)Google Scholar
  19. 88.
    F. Hiai, Matrix analysis: matrix monotone functions, matrix means and majorization. Interdiscip. Inf. Sci. 16(2), 139–248 (2010)MathSciNetzbMATHGoogle Scholar
  20. 91.
    T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. A Series of Modern Surveys in Mathematics, vol. 63 (Springer, Cham, 2016)zbMATHCrossRefGoogle Scholar
  21. 95.
    K. Juschenko, I.G. Todorov, L. Turowska, Multidimensional operator multipliers. Trans. Am. Math. Soc. 361, 4683–4720 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 110.
    E. Kissin, D. Potapov, V. Shulman, F. Sukochev, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations. Proc. Lond. Math. Soc. 108(3), 327–349 (2014)MathSciNetzbMATHGoogle Scholar
  23. 119.
    C. Le Merdy, A. Skripka, Higher order differentiability of operator functions in Schatten norms. J. Inst. Math. Jussieu. https://doi.org/10.1017/S1474748019000033
  24. 138.
    B.S. Pavlov, Multidimensional operator integrals, in Linear Operators and Operator Equations. Problems in Mathematical Analysis, no. 2 (Izdat Leningrad University, Leningrad, 1969, in Russian), pp. 99–122Google Scholar
  25. 146.
    V.V. Peller, Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233(2), 515–544 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 147.
    V.V. Peller, Differentiability of functions of contractions, in Linear and Complex Analysis. American Mathematical Society Translations: Series 2, vol. 226, Advances in the Mathematical Sciences, vol. 63 (American Mathematical Society, Providence, 2009), pp. 109–131Google Scholar
  27. 149.
    V.V. Peller, Multiple operator integrals in perturbation theory. Bull. Math. Sci. 6, 15–88 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 158.
    D. Potapov, F. Sukochev, Double operator integrals and submajorization. Math. Model. Nat. Phenom. 5(4), 317–339 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 159.
    D. Potapov, F. Sukochev, Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207(2), 375–389 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 161.
    D. Potapov, F. Sukochev, Fréchet differentiability of Sp norms. Adv. Math. 262, 436–475 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 163.
    D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order. Invent. Math. 193(3), 501–538 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 164.
    D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order for contractions. Proc. Lond. Math. Soc. 108(3), 327–349 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 166.
    D. Potapov, A. Skripka, F. Sukochev, Trace formulas for resolvent comparable operators. Adv. Math. 272, 630–651 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 168.
    D. Potapov, A. Skripka, F. Sukochev, Functions of unitary operators: derivatives and trace formulas. J. Funct. Anal. 270(6), 2048–2072 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 169.
    D. Potapov, A. Skripka, F. Sukochev, A. Tomskova, Multilinear Schur multipliers and applications to operator Taylor remainders. Adv. Math. 320, 1063–1098 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 170.
    D. Potapov, F. Sukochev, A. Tomskova, D. Zanin, Fréchet differentiability of the norm of Lp-spaces associated with arbitrary von Neumann algebras. Trans. Am. Math. Soc. 371(11), 7493–7532 (2019)zbMATHCrossRefGoogle Scholar
  37. 171.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic, New York, 1980)Google Scholar
  38. 191.
    A. Skripka, Estimates and trace formulas for unitary and resolvent comparable perturbations. Adv. Math. 311, 481–509 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 196.
    M.Z. Solomjak, V.V. Sten’kin, A certain class of multiple operator Stieltjes integrals, in Linear Operators and Operator Equations. Problems in Mathematical Analysis, no. 2 (Izdat Leningrad University, Leningrad, 1969, in Russian), pp. 122–134. Translation: Linear Operators and Operator Equations. Problems in Mathematical Analysis (Consultants Bureau, New York, 1971), pp. 99–108Google Scholar
  40. 199.
    V.V. Sten’kin, Multiple operator integrals. Izv. Vysš. Učebn. Zaved. Mat. 179(4), 102–115 (1977, in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna Skripka
    • 1
  • Anna Tomskova
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  2. 2.School of Computer Science and EngineeringInha University in TashkentTashkentUzbekistan

Personalised recommendations