Next News Recommendation via Knowledge-Aware Sequential Model

  • Qianfeng Chu
  • Gongshen LiuEmail author
  • Huanrong Sun
  • Cheng Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11856)


A news recommendation system aims to predict the next news based on users’ interaction histories. In general, the clicking sequences from the interaction histories indicate users’ latent preference, which plays an important role in predicting their future interest. Besides, news articles consist of considerable knowledge entities which have deep connections from common sense of human. In this paper, we propose a Self-Attention Sequential Knowledge-aware Recommendation (Saskr) system consisting of sequential-aware and knowledge-aware modelling. We use the self-attention mechanism to uncover sequential patterns in the sequential-aware modelling. The knowledge-aware modelling leverage the knowledge graph as side information to mine deep connections between news, thus improving diversity and extensibility of recommendation. Content-based news embeddings help to address the item cold-start problem. Through extensive experiments on the real-world news dataset, we demonstrate that the proposed model outperforms state-of-the-art deep neural sequential recommendation systems.


News recommendation Sequential recommendation Knowledge-aware modelling 



This research work has been funded by the National Natural Science Foundation of China (Grant No. 61772337, U1736207), and the National Key Research and Development Program of China NO. 2016QY03D0604.


  1. 1.
    Bogina, V., Kuflik, T.: Incorporating dwell time in session-based recommendations with recurrent neural networks. In: RecTemp@ RecSys, pp. 57–59 (2017)Google Scholar
  2. 2.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
  3. 3.
    Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)
  4. 4.
    Huang, J., Zhao, W.X., Dou, H., Wen, J.R., Chang, E.Y.: Improving sequential recommendation with knowledge-enhanced memory networks. In: SIGIR, pp. 505–514. ACM (2018)Google Scholar
  5. 5.
    Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)
  6. 6.
    Kompan, M., Bieliková, M.: Content-based news recommendation. In: Buccafurri, F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 61–72. Springer, Heidelberg (2010). Scholar
  7. 7.
    Kumar, V., Khattar, D., Gupta, S., Gupta, M., Varma, V.: Deep neural architecture for news recommendation. In: CLEF (Working Notes) (2017)Google Scholar
  8. 8.
    Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: CIKM, pp. 1419–1428. ACM (2017)Google Scholar
  9. 9.
    Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: CIKM, pp. 509–518. ACM (2008)Google Scholar
  10. 10.
    Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: RecSys, pp. 130–137. ACM (2017)Google Scholar
  11. 11.
    Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: WWW, pp. 811–820. ACM (2010)Google Scholar
  12. 12.
    Song, Y., Shi, S., Li, J., Zhang, H.: Directional skip-gram: explicitly distinguishing left and right context for word embeddings. In: NAACL, pp. 175–180 (2018)Google Scholar
  13. 13.
    Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: DLRS, pp. 17–22. ACM (2016)Google Scholar
  14. 14.
    Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: WSDM, pp. 565–573. ACM (2018)Google Scholar
  15. 15.
    Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)Google Scholar
  16. 16.
    Wang, H., et al.: RippleNet: propagating user preferences on the knowledge graph for recommender systems. In: CIKM, pp. 417–426. ACM (2018)Google Scholar
  17. 17.
    Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for news recommendation. In: WWW, pp. 1835–1844. International World Wide Web Conferences Steering Committee (2018)Google Scholar
  18. 18.
    Xu, B., et al.: CN-DBpedia: a never-ending Chinese knowledge extraction system. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 428–438. Springer, Cham (2017). Scholar
  19. 19.
    Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: KDD, pp. 353–362. ACM (2016)Google Scholar
  20. 20.
    Zhang, S., Tay, Y., Yao, L., Sun, A.: Next item recommendation with self-attention. arXiv preprint arXiv:1808.06414 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qianfeng Chu
    • 1
  • Gongshen Liu
    • 1
    Email author
  • Huanrong Sun
    • 2
  • Cheng Zhou
    • 2
  1. 1.Shanghai Jiaotong UniversityShanghaiChina
  2. 2.Shanghai Songheng Network Technology Co., Ltd.ShanghaiChina

Personalised recommendations