Advertisement

The Risk of Invasions When Using Acacia spp. in Forestry

  • Ciro José Ribeiro de Moura
  • Nina Attias
  • Helena de Godoy Bergallo
Chapter

Abstract

The use of exotic species by man can generate diverse environmental and economic benefits. Nevertheless, when dealing with exotic species, it is necessary to take into account its complex relationship with human communities and natural ecosystems. As a backfire, exotic species can alter the properties of local ecosystems, causing economic and environmental damage if they become invasive (Richardson et al. Divers Distrib, 17: 771–787, 2011a; Richardson et al. A compendium of essential concepts and terminology in invasion ecology. In: Richardson, D.M. (ed.) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell: Oxford, pp 409–420, 456, 2011b). In addition to the effect on the ecological integrity of ecosystems and, consequently, on the services provided by them, exotic species can be the cause of great economic losses directly influencing agriculture, forestry, and public health (Pimentel et al. Agric Ecosyst Environ, 84: 1–20, 2001). Recently, Vitousek et al. (2017) proposed that biological invasions are so widespread and the impacts are so vast that this should be considered as a significant component of global environmental change.

Keywords

Acacia mangium Acacia mearnsii Invasive alien species 

Notes

Acknowledgments

CJRM thanks the Coordination of Superior Level Staff Improvement for the doctorate scholarship, NA thanks the National Council for Scientific and Technological Development for the master’s scholarship and H.G.B. thanks Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, National Council for Scientific and Technological Development, and Prociência/UERJ for research grants.

References

  1. ABRS (2001) Flora of Australia, vol 11. CSIRO Publishing, Clayton, p 673Google Scholar
  2. Aguiar A Jr, Barbosa RI, Barbosa JB, Mourão M Jr (2014) Invasion of Acacia mangium in Amazonian savannas following planting for forestry. Plant Ecol Divers 7(1–2):359–369CrossRefGoogle Scholar
  3. Attias N, Siqueira MF, & de Godoy Bergallo H (2014) Acácias australianas no Brasil: histórico, formas de uso e potencial de invasão. Biodiversidade Brasileira (2):74–96Google Scholar
  4. Bachega LR, Bouillet JP, de Cássia Piccolo M, Saint-André L, Bouvet JM, Nouvellon Y et al (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the home field advantage hypothesis. For Ecol Manag 359:33–43CrossRefGoogle Scholar
  5. Balieiro FDC, Tonini H (2018) Produção científica brasileira (2007–2016) sobre Acacia mangium Willd.: estado da arte e reflexões. Embrapa Solos-Artigo em periódico indexado (ALICE)Google Scholar
  6. Balieiro FDC, Dias LE, Franco AA, Campello EF, de Faria SM (2004) Acúmulo de nutrientes na parte aérea, na serapilheira acumulada sobre o solo e decomposição de filódios de Acacia mangium Willd. Ciência Florestal 14(1):59–65CrossRefGoogle Scholar
  7. Balieiro FDC, Franco AA, Fontes RLF, Dias LE, Campello EFC, Faria SMD (2007) Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis. Revista Árvore 31(2):339–346CrossRefGoogle Scholar
  8. Barbosa RI (2002) Florestamento dos sistemas de vegetação aberta (Savanas/Cerrados) de Roraima por espécies exóticas (Acacia mangium Willd). Conselho Estadual de Meio Ambiente, Ciência e Tecnologia de Roraima, Boa VistaGoogle Scholar
  9. Barua SP, Khan MMH, Reza AHMA (2001). The status of alien invasive species in Bangladesh and their impact on the ecosystems. In Report of the workshop on alien invasive species, GBF-SSEA, Colombo, Sri Lanka. IUCN Biodiversity Program, pp 1–8Google Scholar
  10. Brancalion PH, Bello C, Chazdon RL, Galetti M, Jordano P, Lima RA et al (2018) Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conserv Lett 11(4):e12454CrossRefGoogle Scholar
  11. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4(5):585–589CrossRefPubMedPubMedCentralGoogle Scholar
  12. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2(8):436–443Google Scholar
  13. Campello EFC (1999) A Influência de Leguminosas Arbóreas Fixadoras de Nitrogênio na Sucessão Vegetal em Áreas Degradadas na Amazônia Viçosa, UFV, 121f. (PhD Thesis) (Forestry Science Institute, University Federal of Viçosa)Google Scholar
  14. Carpanezzi, O.T.B. 2011. Espécies vegetais exóticas no parque estadual de Vila Velha: subsídios para controle e erradicação, p. 67-74. In: Carpanezzi, O.T.B. & Campo, J.B. (orgs.). Coletânea de Pesquisas: Parques Estaduais de Vila Velha, Cerrado e Guartelá. Instituto Ambiental do Paraná: Curitiba, p 374Google Scholar
  15. Carvalho SR, Almeida DL, Aronovich S, Camargo Filho ST, Dias PF, Franco AA (1998) Recuperação de Áreas Degradadas do Estado do Rio de Janeiro. Documentos (76) da Embrapa-CNPAB, p 11Google Scholar
  16. Cassey P, Delean S, Lockwood JL, Sadowski JS, Blackburn TM (2018) Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol 16(4): e2005987Google Scholar
  17. Castro-Díez P, Langendoen T, Poorter L, López AS (2011) Predicting Acacia invasive success in South Africa on the basis of functional traits, native climatic niche and human use. Biodivers Conserv 20(12):2729–2743CrossRefGoogle Scholar
  18. Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149CrossRefGoogle Scholar
  19. Correia GG DS, Martins SV (2015) Banco de sementes do solo de floresta restaurada, Reserva Natural Vale, ES. Floresta e Ambiente 22(1):79–87Google Scholar
  20. Crosby AW (2004) Ecological imperialism: the biological expansion of Europe, 900-1900. Cambridge University PressGoogle Scholar
  21. Daehler CC, Carino DA (2000) Predicting invasive plants: prospects for a general screening system based on current regional models. Biol Invasions 2:93–102CrossRefGoogle Scholar
  22. Dahl H, Jakobsen J, Raitzer DA (2001) Wattle eradication via the working for water program, compared with wattle utilization and management for Makomereng, South Africa. SLUSE Report, p 52Google Scholar
  23. de Souza Correia GG, Martins SV (2015) Banco de sementes do solo de floresta restaurada, Reserva Natural Vale, ES. Floresta e Ambiente 22(1):79–87CrossRefGoogle Scholar
  24. Diamond J (2005) Collapse: how societies choose to fail or succeed. Divers Distrib 17:788–809Google Scholar
  25. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13(2):85–91CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, ... Mohan J (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3(9):479–486Google Scholar
  27. FAO (Food and Agriculture Organization) (2006) Global forest resources assessment 2005: progress towards sustainable forest management. Relatório Técnico, p 350Google Scholar
  28. Faria SM, Franco AA, Campello EF, Silva EMR (1998) Recuperação de Solos Degradados com Leguminosas Noduladas e Micorrizadas. Documentos (77) da Embrapa-CNPAB, p 23Google Scholar
  29. Fernandes M, Devy-Vareta N, Rangan H (2013) Plantas exóticas invasoras e instrumentos de gestão territorial. O caso paradigmático do género Acacia em Portugal. Revista de Geografia e ordenamento do território 1(4):83–107Google Scholar
  30. Ferrão JEM (1993) A aventura das plantas e os descobrimentos portugueses, 2nd edn. Instituto de Investigaçäo Científica Tropical, LisboaGoogle Scholar
  31. Franco AA, De Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29(5–6):897–903CrossRefGoogle Scholar
  32. Franco AA (2018). In: Maria Filipipini Alba J (Editor Técnico.), Recuperação de áreas mineradas. 3ª Edição rev. e ampliada—Brasília, p 456Google Scholar
  33. Frohlich D, Lau A (2008) New plant records from O’ahu for 2007. Bishop Museum Occasional Papers 100:3–12Google Scholar
  34. Galatowitsch S, Richardson DM (2005) Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biol Conserv 122:509–521CrossRefGoogle Scholar
  35. Garay I, Kindel A, Carneiro R, Franco AA, Barros E, Abbadie L (2003) Comparação da matéria orgânica e de outros atributos do solo entre plantações de Acacia mangium e Eucalyptus grandis. Revista Brasileira de Ciências do Solo 27(1):705–712CrossRefGoogle Scholar
  36. Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT (2011) Global uses of Australian acacias–recent trends and future prospects. Divers Distrib 17(5):837–847CrossRefGoogle Scholar
  37. Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology. No. Sirsi i9780878935185. Sinauer Associates, SunderlandGoogle Scholar
  38. Hansted ALS, Nakashima GT, Martins MP, Yamamoto H, Yamaji FM (2016) Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 184:180–184Google Scholar
  39. Henderson L (2007) Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African Plant Invaders Atlas (SAPIA). Bothalia 37(2):215–248CrossRefGoogle Scholar
  40. Heriansyah I, Miyakuni K, Kato T, Kiyono Y, Kanazawa Y (2007) Growth characteristics and biomass accumulations of Acacia mangium under different management practices in Indonesia. J Trop For Sci 19(4):226–235Google Scholar
  41. Higa RCV, Wrege MS, Mochiutti S, Mora AL, Higa AR, Simon AA (2009) Acácia negra. Embrapa Amapá-Capítulo em livro científico (ALICE)Google Scholar
  42. Hoong YB, Paridah MT, Luqman CA, Koh MP, Loh YF (2009) Fortification of sulfited tannin from the bark of Acacia mangium with phenol–formaldehyde for use as plywood adhesive. Ind Crop Prod 30(3):416–421CrossRefGoogle Scholar
  43. IBGE (2017) Produção da extração vegetal e da silvicultura. Instituto Brasileiro de Geografia e EstatísticaGoogle Scholar
  44. IBGE (2019) Produção da extração vegetal e da silvicultura. Instituto Brasileiro de Geografia e EstatísticaGoogle Scholar
  45. Industria Brasileira de Árvores (2016) Anuárioestatístico 2016 ano base 2015Google Scholar
  46. IUCN—ISSG (n.d.) —Base de Dados Global sobre Espécies Exóticas Invasoras. www.issg.org/database. Accessed 10 Jan 2019
  47. Jobbágy EG, Jackson RB (2003) Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205–229CrossRefGoogle Scholar
  48. Kamo K, Vacharangkura T, Tiyanon S, Viriyabuncha C, Thaingam R, Sakai M (2009) Response to unmanaged Acacia mangium plantations to delayed thinning in north-east Thailand. J Trop For Sci 21(3):223–234Google Scholar
  49. Kleinpaul IS et al (2010) Plantiomisto de Eucalyptus urograndis e Acacia mearnsii em sistema agroflorestal: I-Produção de biomassa. Ciência Florestal 20(4):621–627CrossRefGoogle Scholar
  50. Kull CA, Rangan H (2008) Acacia exchanges: wattles, thorn trees, and the study of plant movements. Geoforum 39:1258–1272CrossRefGoogle Scholar
  51. Little EL Jr, Skolmen RG (1989) Common forest trees of Hawaii (native and introduced), p. 732-733. In: Agriculture Handbook, vol 679. Forest Service of the U.S. Department of Agriculture, Washington, DC, p 321Google Scholar
  52. Lockwood JL, Simberloff D, Mckinney ML, Holle BV (2001) How many, and which, plants will invade natural areas? Biol Invasions 3:1–8CrossRefGoogle Scholar
  53. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228Google Scholar
  54. Lorenzi H, Souza HM, Torres MAV, Bacher L (2003) Árvores Exóticas no Brasil: Madeireiras, ornamentais e aromáticas. Instituto Plantarum, Nova Odessa, p 352Google Scholar
  55. Lorenzo P, Pazos-Malvido E, González L, Reigosa MJ (2008) Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopath J 22(2):64–76Google Scholar
  56. Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67(1):101CrossRefGoogle Scholar
  57. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Hollands Printing Ltd, Auckland, p 11pGoogle Scholar
  58. Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 16(1):1–18CrossRefGoogle Scholar
  59. Midgley SJ, Turnbull JW (2003) Domestication and use of Australian acacias: case studies of five important species. Aust Syst Bot 16(1):89–102CrossRefGoogle Scholar
  60. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. BioScience 43(4):219–224Google Scholar
  61. Mochiutti S, Higa AR, Simon AA (2007) Susceptibilidade de ambientes campestres à invasão de acácia-negra (Acacia mearnsii De Wild.) no Rio Grande do Sul. Floresta 37(2):239–253CrossRefGoogle Scholar
  62. Mora AL (2002) Aumento da produção de sementes geneticamente melhoradas de Acacia mearnsii De Wild. (Acácia negra) no Rio Grande do Sul. Curitiba. 140 f. Tese (Doutorado em Ciências Florestais)—Setor de Ciências Agrárias. Universidade Federal do Paraná, CuritibaGoogle Scholar
  63. Moyo HPM, Fatunbi AO (2010) Utilitarian perspective of the invasion of some South African biomes by Acacia mearnsii. Global J Environ Res 4(1):6–17Google Scholar
  64. Nambiar SEK, Hardwood C, Kien ND (2014) Acacia plantations in Vietnam: research and knowledge application to secure a sustainable future. Southern Forests 77:1–10CrossRefGoogle Scholar
  65. Nardelli A (2004) Resumo Público do Relatório de Certificação de Manejo Florestal da Tanagro S.A, vol 27. RelatórioTécnico, p 46Google Scholar
  66. Nykvist N, Sim BL (2009) Changes in carbon and inorganic nutrients after clear felling a rainforest in Malaysia and planting with Acacia mangium. J Trop For Sci 21(2):98–112Google Scholar
  67. Oliveira EPF, Castro TMDL, Venâncio SM (2004) Espécies de formigas que interagem com as sementes de Mabea fistulifera Mart.(Euphorbiaceae). Revista Árvore 28(5):733–738Google Scholar
  68. Parrotta JA, Knowles OH (1999) Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restor Ecol 7(2):103–116CrossRefGoogle Scholar
  69. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  70. Pysek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand. In: Nentwig W (ed) Biological invasions, ecological studies, vol 193. Springer, Berlin, p 441Google Scholar
  71. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77(6):1655–1661CrossRefGoogle Scholar
  72. Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181CrossRefGoogle Scholar
  73. Richardson DM, van Wilgen BW (2004) Invasive alien plants in South Africa: how well do we understand the ecological impacts? S Afr J Sci 100(Feb):45–52Google Scholar
  74. Richardson DM, Thuiller W (2007) Home away from home—objective mapping of high-risk source areas for plant introductions. Divers Distrib 13(3):299–312CrossRefGoogle Scholar
  75. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12(1):18–26CrossRefGoogle Scholar
  76. Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011a) Human mediated introduction of Australian acacia—a global experiment in biogeography. Divers Distrib 17:771–787CrossRefGoogle Scholar
  77. Richardson DM, Pysek P, Carlton JT (2011b) A compendium of essential concepts and terminology in invasion ecology, p. 409–420. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Oxford, p 456Google Scholar
  78. Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6(2):93–107CrossRefGoogle Scholar
  79. Rodrigues RR, Lima RA, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142(6):1242–1251Google Scholar
  80. Rouget M, Robertson MP, Wilson JR, Hui C, Essl F, Renteria JL, Richardson DM (2016) Invasion debt–Quantifying future biological invasions. Divers Distrib 22(4):445–456Google Scholar
  81. Sahri MH, Ashaari ZA. I. D. O. N, Kader RA, & Mohmod AL (1998) Physical and mechanical properties of Acacia mangium and Acacia auriculiformis from different provenances. Pertanika J Trop Agric Sci, 21(2):73–82Google Scholar
  82. Santos AW, Costa NN, Silva RR, Correa BC, Machado KK, Moura EG (2009) Investigação do potencial sustentável de combinações de leguminosas em aléias para o uso em solos tropicais. Revista Brasileira de Agroecologia 4:2Google Scholar
  83. Schneider PR, Oesten G, Brill A, Mainardi GL (1991) Determinação da produção de casca em acácia- negra, Acacia mearnsii De Wild. Ciência Florestal 1(1):64–75CrossRefGoogle Scholar
  84. Shackleton RT, Richardson DM, Shackleton CM, Bennett B, Crowley SL, Dehnen-Schmutz K, Marchante E (2019) Explaining people’s perceptions of invasive alien species: A conceptual framework. J Environ Manag 229:10–26Google Scholar
  85. Souza CR, Rossi LMB, Azevedo CP, Lima RMB (2004) Comportamento da Acacia mangium e de clones de Eucalyptus grandis x E. urophylla em plantios experimentais na Amazônia Central. Scientia Forestalis 65:95–101Google Scholar
  86. Stone CP, Smith CW, Tunison JT (1992) Alien plant invasions in native ecosystems of Hawaii: management and research. University of Hawaii Press, Honolulu, HI, p 900Google Scholar
  87. Suganuma MS, Assis GB, Durigan G (2014) Changes in plant species composition and functional traits along the successional trajectory of a restored patch of Atlantic Forest. Community Ecol 15(1):27–36Google Scholar
  88. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes G, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250CrossRefGoogle Scholar
  89. Tong PS, Ng FSP (2008) Effect of light intensity on growth, leaf production, leaf lifespan and leaf nutrient budgets of Acacia mangium, Cinnamom uminers, Dyera costulata, Eusideroxylon zwageri and Shorea roxburghii. J Trop For Sci 20(3):218–234Google Scholar
  90. Tsukamoto J, Sabang J (2005) Soil macro-fauna in an Acacia mangium plantation in comparison to that in a primary mixed dipterocarp forest in the lowlands of Sarawak, Malaysia. Pedobiologia 49:69–80CrossRefGoogle Scholar
  91. van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Moore JL, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075CrossRefGoogle Scholar
  92. Vilà M, Espinar JL, Hejda M, Hulme PE, Jorosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefPubMedPubMedCentralGoogle Scholar
  93. Vitousek PM, Loope LL, Westbrooks R (2017) Biological invasions as global environmental change. Am Sci 84(5):468Google Scholar
  94. Weber J, Tham FY, Galiana A, Prin Y, Ducousso M, Lee SK (2007) Effects of nitrogen source on the growth and nodulation of Acacia mangium in aeroponic culture. J Trop For Sci 19(2):103–112Google Scholar
  95. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144CrossRefPubMedPubMedCentralGoogle Scholar
  96. Xiong Y, Xia H, Li Z, Cai X, Fu S (2008) Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304:179–188CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ciro José Ribeiro de Moura
    • 1
  • Nina Attias
    • 2
  • Helena de Godoy Bergallo
    • 3
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Animal BiologyFederal University of Mato Grosso do SulCampo GrandeBrazil
  3. 3.Department of EcologyInstitute of Biology Roberto Alcântara Gomes, Rio de Janeiro State UniversityRio de JaneiroBrazil

Personalised recommendations