Advertisement

Ecosystem Services in Eucalyptus Planted Forests and Mixed and Multifunctional Planted Forests

  • Fabiano de Carvalho BalieiroEmail author
  • Luiz Fernando Duarte de Moraes
  • Rachel Bardy Prado
  • Ciro José Ribeiro de Moura
  • Felipe Martini Santos
  • Arthur Prudêncio de Araujo Pereira
Chapter
  • 15 Downloads

Abstract

Forests may provide ecosystem services (ES) at different levels. The current trend of reduction in natural forest cover and expansion of forest plantations forces the forest managers to implement plans that maximize the provision of multiple socioeconomic and ecological benefits. Intensively managed forests are systems that can no longer be understood as eucalyptus plantations only, especially from the perspective of ES. The mosaic of exotic planted and native forests in the rural landscape matrix brings immeasurable benefits to these sustainability dimensions. When these plantations become more diverse, a greater variety of ecosystem services appears. Mixed planted forests are an alternative to traditional cropping and allow a right balance between production (wood) and ecological benefits. This chapter raises a discussion about the ecosystem services brought by three basic types of forests planted in Brazil: commercial planted forests dominated by Eucalyptus monocultures under short rotation regimes; mixed low-diversity plantations such as those of Eucalyptus and Acacia mangium; and the high-diversity mixed plantation forests. Multifunctional landscapes are expected to reduce biodiversity loss and maintain a stable supply of ecosystem services, while under commercial level with increased rotation length, multiple uses, alternative species or clone arrangements (as mixed with N2-fixing trees), as well as conservative soil practices.

Keywords

Forest ecology Forest sustainability Intercropped plantations Biodiversity Ecosystem functions 

References

  1. Amazonas NT, Forrester DI, Silva CC, Almeida DRA, Rodrigues RR, Brancalion PH (2018) High diversity mixed plantations of Eucalyptus and native trees: an interface between production and restoration for the tropics. For Ecol Manag 417:247–256CrossRefGoogle Scholar
  2. Andrade D, Romeiro A (2019) Serviços ecossistêmicos e sua importância para o sistema econômico e o bem-estar humano. IE/UNICAMP, Campinas, p 155Google Scholar
  3. Andreote FD, Silva MCP (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34CrossRefGoogle Scholar
  4. Balieiro FC, Pereira MG, Alves BJR, Resende ASD, Franco AA (2008) Soil carbon and nitrogen in pasture soil reforested with eucalyptus and guachapele. Rev Bras Cienc Solo 32:1253–1260CrossRefGoogle Scholar
  5. Balieiro FC, Tonini H, Lima RA (2018) Produção científica brasileira (2007–2016) sobre Acacia mangium Willd.: estado da arte e reflexões. Cad Cienc Tecnol 35:37–52Google Scholar
  6. Ballester MVR, Victoria RL, Krusche AV (2010) Agroenergia e sustentabilidade do solo e da água. In: Prado RB, Turetta APD, Andrade AG (org), Manejo e conservação do solo e da água no contexto das mudanças ambientais. Embrapa, Rio de Janeiro, vol. 1:215-236Google Scholar
  7. Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nat News 506:153CrossRefGoogle Scholar
  8. Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172CrossRefGoogle Scholar
  9. Bini D, Santos CA, Silva MCP, Bonfim JA, Cardoso EJBN (2018) Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Sci Agric 75:102–110CrossRefGoogle Scholar
  10. Binkley D, Dunkin KA, DeBell D, Ryan MG (1992) Production and nutrient cycling in mixed plantations of Eucalyptus and Albizia in Hawaii. For Sci 38:393–408Google Scholar
  11. Birkhofer K, Andersson GKS, Bengtsson J, Bommarco R, Dänhardt J, Ekbom B, Ekroos J, Hahn T, Hedlund K, Jönsson AM, Lindborg R, Olsson O, Rader R, Rusch A, Stjernman M, Williams A, Smith HG (2018) Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol Conserv 218:247–253CrossRefGoogle Scholar
  12. Blesh J (2018) Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. J Appl Ecol 55:38–48CrossRefGoogle Scholar
  13. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits. Science 320:1444–1449.  https://doi.org/10.1126/science.1155121
  14. Bonfanti P, Anca LA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383CrossRefGoogle Scholar
  15. Bormann FH, Likens GE (1979) Catastrophic disturbance and the steady-state in northern hardwood forests. Am Sci 67(6):660–669Google Scholar
  16. Brandani CB, Rocha JHT, Godinho TO, Wenzel AVA, Gonçalves JLM (2017) Soil C and Al availability in tropical single and mixed-species of Eucalyptus sp. and Acacia mangium plantations. Geod Reg 10:85–92Google Scholar
  17. Brandão Jr A, Barreto P, Lenti F, Shimbo J, Alencar A (2018) Emissões do setor de mudanças de uso da terra. SEEG, Sistema de Estimativa das Emissões de Gases de Efeito Estufa, Documento de Análise, p 56Google Scholar
  18. Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manag 301:43–50CrossRefGoogle Scholar
  19. Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549CrossRefGoogle Scholar
  20. Câmara CD, De Paula Lima W, Vieira SA (2000) Clear-cutting of a 50 year old Eucalyptus plantation: impacts on nutrient cycling in an experimental catchment. Sci For 57:99–109Google Scholar
  21. Cassiano CC (2017) Efeitos hidrológicos da composição da paisagem em microbacias com florestas plantadas de Eucalyptus. PhD Thesis, Universidade de São PauloGoogle Scholar
  22. Chaer GM, Tótola MR (2007) Impact of organic residue management on soil quality indicators during replanting of eucalypt stands. Rev Bras Cienc Solo 31:1381–1396CrossRefGoogle Scholar
  23. Chaer GM, Resende AS, Campello EFC, Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149CrossRefGoogle Scholar
  24. Chazdon RL, Brancalion PHS, Laestadius L, Bennett-Currt A, Buckingham K, Kumar C, Moll-Rocek J, Vieira ICG, Wilson SJ (2016) When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45:538–550CrossRefPubMedPubMedCentralGoogle Scholar
  25. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cook RL, Binkley D, Stape JL (2016) Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For Ecol Manag 359:92–98CrossRefGoogle Scholar
  27. Costanza R, Daly H (1992) Natural capital and sustainable development. Conserv Biol 6:37–46CrossRefGoogle Scholar
  28. Costanza R, Folke C (1997) Valuing ecosystem services with efficiency, fairness, and sustainability as goals. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington DC, pp 49–70Google Scholar
  29. Corbeels M, McMurtrie RE, Pepper DA, O’Connell AM (2005) A process-based model of nitrogen cycling in forest plantations: Part I. Structure, calibration and analysis of the decomposition model. Ecol Model 187(4):426–448Google Scholar
  30. Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111CrossRefGoogle Scholar
  31. Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington DC, p 392Google Scholar
  32. Damour G, Navas ML, Garnier E (2018) A revised trait-based framework for agroecosystems including decision rules. J Appl Ecol 55:12–24CrossRefGoogle Scholar
  33. De Groot RS (1987) Environmental functions as a unifying concept for ecology and economics. Environmentalist 7:105–109CrossRefGoogle Scholar
  34. De Groot RS (2006) Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multifunctional landscapes. Landscape Urban Plan 75(3-4):175–186CrossRefGoogle Scholar
  35. De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408CrossRefGoogle Scholar
  36. De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7(3):260–272CrossRefGoogle Scholar
  37. Dee N, Baker J, Drobny N, Duke K, Whitman I, Fahringer D (1973) An environmental evaluation system for water resource planning. Water Resour Res 9:523–535CrossRefGoogle Scholar
  38. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Eco Econ 69:1858–1868CrossRefGoogle Scholar
  39. Ehrlich PR, Ehrlich AH (1970) Population, resources, environment: issues in human ecology, 2nd edn. W. H. Freeman, San Francisco, p 383Google Scholar
  40. Ehrlich PR, Ehrlich AH, Holdren JP (1977) Ecoscience: population, resources, environment. W.H. Freeman, San Francisco, pp 546–547Google Scholar
  41. FAO (2010) Global forest resources assessment. FAO, Rome, p 378Google Scholar
  42. FAO (2018) The state of the world’s forests 2018—forest pathways to sustainable development. FAO, Rome, p 139Google Scholar
  43. Ferraz SFB, Lima WP, Rodrigues CB (2013) Managing forest plantation landscapes for water conservation. For Ecol. Manag. 301:58–66CrossRefGoogle Scholar
  44. Ferraz SFB, Ferraz KMPMB, Cassiano CC, Brancalion PHS, Luz DTA, Azevedo TN, Tambosi LR, Metzger JP (2014) How good are tropical forest patches for ecosystem services provisioning? Landsc Ecol 29:187–200CrossRefGoogle Scholar
  45. Ferreira J, Pardini R, Metzger JP, Fonseca CR, Pompeu PS, Sparovek G, Louzada J (2012) Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. J Appl Ecol 49:535–541Google Scholar
  46. Fialho RC, Zinn YL (2014) Changes in soil organic carbon under Eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Develop 25:428–437CrossRefGoogle Scholar
  47. Fisher B, Turner RK (2008) Ecosystem services: classification for valuation. Biol Conserv 141:1167–1169CrossRefGoogle Scholar
  48. Fisher B, Costanza R, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643–653CrossRefGoogle Scholar
  49. Fonseca ES, Peixoto RS, Rosado AS, Balieiro FC, Tiedje JM, Rachid CTCC (2018) The Microbiome of Eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microb Ecol 75:183–191CrossRefGoogle Scholar
  50. Forrester DI, Bauhus J, Cowie AL (2005) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J Forest Res 35:2942–2950CrossRefGoogle Scholar
  51. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  52. Forrester DI, Pares A, O’Hara C, Khanna PK, Bauhus J (2013) Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 16:123–132CrossRefGoogle Scholar
  53. Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Bio Biochem 29:897–903CrossRefGoogle Scholar
  54. Franco AA, Resende AS, Campello EFC (2018) In: Alba JMF (ed) Recuperação de áreas mineradas, 3rd edn. Embrapa, Brasília, p 456Google Scholar
  55. Frueh-Mueller A, Krippes C, Hotes S, Breuer L, Koellner T, Wolters V (2018) Spatial correlation of agri-environmental measures with high levels of ecosystem services. Ecol Indic 84:364–370CrossRefGoogle Scholar
  56. Gómez-Baggethun E, De Groot R (2007) Capital natural y funciones de los ecosistemas: explorando las bases ecológicas de la economía. Ecosistemas 16(3):4–14Google Scholar
  57. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27CrossRefGoogle Scholar
  58. Haines-Young R, Potschin-Young M (2018) Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosystem 3: e27108. https://doi.org/10.3897/oneeco.3.e27108
  59. Hakamada R, Hubbard RM, Ferraz S, Stape JL, Lemos C (2017) Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South For J For Sci 79(3):251–257CrossRefGoogle Scholar
  60. Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecological Economics. 57(2):209–228. https://doi.org/10.1016/j.ecolecon.2005.04.005
  61. Heal G (2000) Valuing ecosystem services. Ecosystems 3(1):24–30CrossRefGoogle Scholar
  62. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190CrossRefGoogle Scholar
  63. Helliwell DR (1969) Valuation of wildlife resources. Reg Stud 3:41–49CrossRefGoogle Scholar
  64. Hermann A, Schleifer S, Wrbk T (2011) The concept of ecosystem services regarding landscape research: a review. Living Rev Landscape Res 5:1–37CrossRefGoogle Scholar
  65. Higa RCV, Mora AL, Higa AR (2000) Plantio de eucalipto na pequena propriedade rural. Embrapa, Curitiba, p 24Google Scholar
  66. Holt AR, Alix A, Thompson A, Maltby L (2016) Food production, ecosystem services and biodiversity: we can’t have it all everywhere. Sci Tot Environ 573:1422–1429CrossRefGoogle Scholar
  67. Hölting L, Beckmann M, Volk M, Cord AF (2019) Multifunctionality assessments—more than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol Indic 103:226–235CrossRefGoogle Scholar
  68. IBÁ (2017) Relatório 2017. IBÁ, p 80Google Scholar
  69. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268CrossRefGoogle Scholar
  70. Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81:3267–3273CrossRefGoogle Scholar
  71. Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204CrossRefGoogle Scholar
  72. King RT (1966) Wildlife and man. NY Conservationist 20(6):8–11Google Scholar
  73. Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216CrossRefGoogle Scholar
  74. Kreye MM, Adams DC, Ghimire R, Morse W, Stein T, Bowker JM (2017) Forest ecosystem services: cultural values. General technical report SRS-226, vol 226. US Department of Agriculture Forest Service, Southern Research Station, Asheville, NC, pp 11–30Google Scholar
  75. Laclau JP, Levillain J, Deleporte P, Nzila JD, Bouillet JP, André LS, Versini A, Mareschal L, Nouvellon Y, M’Bou AT, Ranger J (2010) Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For Ecol Manag 260:2148–2159CrossRefGoogle Scholar
  76. Laclau JP, Gonçalves JLM, Stape JL (2013) Perspectives for the management of eucalypt plantations under biotic and abiotic stresses. For Ecol Manag 301:1–5CrossRefGoogle Scholar
  77. Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258CrossRefGoogle Scholar
  78. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21(4):297–308CrossRefGoogle Scholar
  79. Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol Lett 17:771–784CrossRefGoogle Scholar
  80. Lescourret F, Magda D, Richard G, Adam-Blondon AF, Bardy M, Baudry J, Doussan I, Dumont B, Lefèvre F, Litrico I, Martin-Clouaire R, Montuelle B, Pellerin S, Plantegenest M, Tancoigne E, Thomas A, Guyomard H, Soussana F (2015) A social–ecological approach to managing multiple agro-ecosystem services. Curr Opin Environ Sust 14:68–75CrossRefGoogle Scholar
  81. Lima WP, Ferraz SFB, Rodrigues CB, Voigtlaender M (2012a) Assessing the hydrological effects of forest plantations in Brazil. In: River conservation and management. John Wiley & Sons, Ltd, Hoboken, NJ, pp 59–68CrossRefGoogle Scholar
  82. Lima WP, Laprovitera R, Ferraz SFB, Rodrigues CB, Silva MM (2012b) Forest plantations and water consumption: a strategy for hydrosolidarity. Int J Forest Res 2012:8CrossRefGoogle Scholar
  83. Liu CLC, Kuchma O, Krutovsky KV (2018) Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. Global Ecol Cons 15:e00419Google Scholar
  84. Macedo MCM, Zimmer AH, Kichel AN, Almeida RG, Araújo AR (2013) Degradação de pastagens, alternativas de recuperação e renovação, e formas de mitigação. In: Encontro de Adubação de Pastagens da Scot Consultoria-Tec-Fértil. Scot Consultoria, Bebedouro, pp 158–181Google Scholar
  85. Marron N, Epron D (2019) Are mixed-tree plantations including a nitrogen-fixing species more productive than monocultures? For Ecol Manag 441:242–252CrossRefGoogle Scholar
  86. Masiero M, Pettenella D, Boscolo M, Barua SK, Animon I, Matta R (2019) Valuing forest ecosystem services—a training manual for planners and project developers. FAO, Rome, p 216Google Scholar
  87. Mcneill JR, Mcneill WH (2003) The human web: a bird’s-eye view of world history. WW Norton & Company, New York, p 350Google Scholar
  88. MEA (2003) Ecosystems and human well-being: a framework for assessment. Island Press, Washington, DCGoogle Scholar
  89. MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  90. Mori AS, Furukawa T, Sasaki T (2013) Response diversity determines the resilience of ecosystems to environmental change. Biol Rev 88:349–364CrossRefGoogle Scholar
  91. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  92. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RB, Börger L, Bennett DJ, Choi es A, Collen B, Day J, Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, Whote HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50CrossRefGoogle Scholar
  93. Nicholson E, Mace GM, Armsworth PR, Atkinson G, Buckle S, Clements T, Ewers RM, Fa JE, Gardner TA, Gibbons J, Grenyer R, Metcalfe R, Mourato S, Muûls M, Osborn D, Reuman DC, Watson C, Milner-Gulland EJ (2009) Priority research areas for ecosystem services in a changing world. J Appl Ecol 46(6):1365–2664Google Scholar
  94. Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P (2015) Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–6083CrossRefGoogle Scholar
  95. O’Farrell PJ, Anderson PM (2010) Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ Sustain 2:59–65CrossRefGoogle Scholar
  96. Oliveira OC, Oliveira IP, Alves BJR, Urquiaga S, Boddey RM (2004) Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agr Eco Env 103:289–300CrossRefGoogle Scholar
  97. Parrotta JA (1999) Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77CrossRefGoogle Scholar
  98. Parrotta JA, Knowles OH (1999) Restoration of tropical moist forest on bauxite mined lands in the Brazilian Amazon. Restor Ecol 7:103–116CrossRefGoogle Scholar
  99. Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99:1–7CrossRefGoogle Scholar
  100. Paula Lima WD, Barros Ferraz SFD, Barros Ferraz KMPMD (2013) Interações bióticas e abióticas na paisagem: uma perspectiva eco-hidrológica. In: Calijuri MC, Cunha DGF (eds) Engenharia Ambiental. Elsevier, Rio de Janeiro, pp 215–244Google Scholar
  101. Pereira APA, Andrade PAM, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJBN (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12(7):e0180371CrossRefPubMedPubMedCentralGoogle Scholar
  102. Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DDL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:655CrossRefPubMedPubMedCentralGoogle Scholar
  103. Periotto NA, Tundisi JG (2018) A characterization of ecosystem services, drivers and values of two watersheds in São Paulo State, Brazil. Braz J Biol 78:397–407CrossRefGoogle Scholar
  104. Prado HM, Murrieta RSS (2015) Presentes do Passado. Ciência Hoje 326(55):32–37Google Scholar
  105. Prado RB, Fidalgo ECC, Monteiro JMG, Schuler AE, Vezzani FM, Garcia JR, Oliveira AP, Viana JHM, Pedreira BCCG, Mendes IC, Reatto A, Parron LM, Clemente EP, Donagemma GK, Turetta APD, Simões M (2016) Current overview and potential applications of the soil ecosystem services approach in Brazil. Pesqui Agropecu Bras 51:1021–1038CrossRefGoogle Scholar
  106. Rachid CTCC (2013) Biodisponibilidade de nutrientes e estrutura microbiana do sistema solo-serapilheira em floresta plantada mista de Eucalyptus urograndis e Acacia mangium. PhD Thesis, Universidade Federal do Rio de JaneiroGoogle Scholar
  107. Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Bio Biochem 66:146–153CrossRefGoogle Scholar
  108. Rachid CTCC, Balieiro FC, Fonseca ES, Peixoto RS, Chaer GM, Tiedje JM, Rosado AS (2015) Intercropped Silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations. PLoS One 10:e0118515CrossRefPubMedPubMedCentralGoogle Scholar
  109. Rey Benayas JM, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15:883–899CrossRefGoogle Scholar
  110. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest how much is left, and how is the remaining forest distributed implications for conservation. Bio Conserv 142:1141–1153CrossRefGoogle Scholar
  111. Rocha PV, Ataíde DHS, Lima JSS et al (2019) Preparo do solo e leguminosa arbórea fixadora de N2 consoricada com eucalipto afetam os estoques de carbono e nitrogênio de solo arenoso. In: Anais do Simpósio Brasileiro de Solos Arenosos. Campo Grande—MSGoogle Scholar
  112. Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Bio Conserv 142:1242–1251CrossRefGoogle Scholar
  113. Rounsevell MDA, Dawson TP, Harrison PA (2010) A conceptual framework to assess the effects of environmental change on ecosystem services. Biodivers Conserv 19(10):2823–2842CrossRefGoogle Scholar
  114. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson R, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff LT, Sykes M, Walker BH, Walker M, Wall D (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  115. Santos DG, Domingues AF, Gisler CVT (2010) Gestão de recursos hídricos na agricultura: O Programa Produtor de Água. In: Prado RB, Turetta APD, Andrade AG (eds) Manejo e Conservação do Solo e da Água no Contexto das Mudanças Ambientais. Embrapa Solos, Rio de Janeiro, pp 353–376Google Scholar
  116. Santos FM, Balieiro FC, Ataíde DHS, Diniz AR, Chaer GM (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. For Ecol Manag 363:86–97028CrossRefGoogle Scholar
  117. Santos FM, Balieiro F de C, Fontes MA, Chaer GM (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil 423:141CrossRefGoogle Scholar
  118. Sayer J, Sunderland T, Ghazoul J, Pfund JL, Sheil D, Meijaard E, Venter M, Boedhihartono AK, Day M, Garcia C, Oosten CV, Buck LE (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U S A 110:8349–8356CrossRefPubMedPubMedCentralGoogle Scholar
  119. Sedjo R, Sohngen B (2012) Carbon sequestration in forests and soils. Annu Rev Res Econom 4:127–144CrossRefGoogle Scholar
  120. Silva JNM, Carvalho JOP, Lopes JCA, Almeida BF, Costa DHM, Oliveira LC, Vanclay JK, Skovsgaard JP (1995) Growth and yield of a tropical rain forest in the Brazilian Amazon 13 years after logging. For Ecol Manag 71:267–274CrossRefGoogle Scholar
  121. Silveira JG (2018) Emissões de gases de efeito estufa e estoque de carbono e nitrogênio em área de plantio misto de eucalipto e acácia no norte do Mato Grosso.Universidade Federal de Mato Grosso, UFMT (Mestrado em Ciências Florestais e Ambientais), 94pGoogle Scholar
  122. Silva CF, Carmo RE, Martins MA, Freitas MSM, Pereira MG, Silva EMR (2015) Deposition and nutritional quality of the litter of pure stands of Eucalyptus camaldulensis and Acacia mangium. Biosci J 31(4).  https://doi.org/10.14393/BJ-v31n4a2015-26297
  123. Singh AN, Zeng DH, Chen FS (2006) Effect of young woody plantations on carbon and nutrient accretion rates in a redeveloping soil on coalmine spoil in a dry tropical environment, India. Land Degrad Dev 17:13–21CrossRefGoogle Scholar
  124. Sloan S, Sayer JA (2015) Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag 352:134–145CrossRefGoogle Scholar
  125. SNIF (Sistema Nacional de Informações Florestais) (2016) Boletim dos Sistema Nacional Florestal. Ministério do Meio Ambiente, Brazil, 10p. (acesso em 10 de dezembro de 2019). http://www.florestal.gov.br/documentos/publicacoes/2230-boletim-snif-producao-florestal-2016/file
  126. SNIF (Sistema Nacional de Informações Florestais) (2017) Serviço Florestal Brasileiro, Brasil, 32p. (acesso em 10 de dezembro de 2019). http://www.florestal.gov.br/documentos/publicacoes/3230-boletim-snif-2017-ed1-final/file)
  127. Sparovek G, Berndes G, Klug ILF, Barretto AGOP (2010) Brazilian agriculture and environmental legislation: status and future challenges. Env Sci Technol 44:6046–6053CrossRefGoogle Scholar
  128. Stallings JR (1990) The importance of understorey on wildlife in a Brazilian eucalypt plantation. Rev Bras Zool 7(3):267–276.  https://doi.org/10.1590/S0101-81751990000300008
  129. Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JMA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC, Azevedo MR (2010) The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. For Ecol Manag 259:1684–1694CrossRefGoogle Scholar
  130. Tarouco CP, Agostinetto D, Panozzo LE, Santos LS, Vignolo GK, Ramos LOO (2009) Períodos de interferência de plantas daninhas na fase inicial de crescimento do eucalipto. Pesqui Agropecu Bras 44(9):1131–1137CrossRefGoogle Scholar
  131. Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand JM, Bouillet JP, Mareschal L (2017) Differences in nitrogen cycling and soil mineralization between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. South For J For Sci 79(1):1–8CrossRefGoogle Scholar
  132. TEEB (2010) The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations (TEEB). Kumar, P., ed., London (Earthscan)Google Scholar
  133. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  134. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  135. Turner RK, Paavola J, Cooper P, Farber S, Jessamy V, Georgiou S (2003) Valuing nature: lessons learned and future research directions. Ecol Econom 46(3):493–510CrossRefGoogle Scholar
  136. Van der Heijden G, Legout A, Pollier B, Bréchet C, Ranger J, Dambrine E (2013) Tracing and modeling preferential flow in a forest soil—potential impact on nutrient leaching. Geoderma 195:12–22CrossRefGoogle Scholar
  137. Vergara W, Scholz SM (eds) (2010) Assessment of the risk of Amazon dieback. World Bank Publications, Washington, DCGoogle Scholar
  138. Voigtlaender M, Laclau JP, Gonçalves JLM, Piccolo MC, Moreria MZ, Nouvellon Y, Ranger J, Bouillet JP (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111CrossRefGoogle Scholar
  139. Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet JP, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau JP (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 436:56–67CrossRefGoogle Scholar
  140. Westman WE (1977) How much are natures services worth. Science 197(4307):960–964CrossRefGoogle Scholar
  141. Wilson MA, Carpenter SR (1999) Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol Appl 9(3):772–783Google Scholar
  142. Zen S (1987) Influência da matocompetição em plantio de Eucalyptus grandis. Série Técnica IPEF 4(12):25–35Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fabiano de Carvalho Balieiro
    • 1
    Email author
  • Luiz Fernando Duarte de Moraes
    • 2
  • Rachel Bardy Prado
    • 1
  • Ciro José Ribeiro de Moura
    • 3
  • Felipe Martini Santos
    • 4
  • Arthur Prudêncio de Araujo Pereira
    • 5
    • 6
  1. 1.EMBRAPA Soils, Brazilian Agricultural Research CorporationRio de JaneiroBrazil
  2. 2.EMBRAPA Agrobiology, Brazilian Agricultural Research CorporationSeropédicaBrazil
  3. 3.Federal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Federal Rural University of Rio de JaneiroSeropédicaBrazil
  5. 5.Department of Soil ScienceUniversity of São Paulo, “Luiz de Queiroz” College of AgriculturePiracicabaBrazil
  6. 6.Soil Science Department (Pici Campus)Federal University of CearáFortalezaBrazil

Personalised recommendations