Advertisement

Artificial Intelligence and Taxation: Risk Management in Fully Automated Taxation Procedures

  • Nadja Braun BinderEmail author
Chapter

Abstract

On January 1, 2017, the Taxation Modernization Act entered into force in Germany. It includes regulations on fully automated taxation procedures. In order to uphold the principle of investigation that characterizes German administrative law, a risk management system can be established by the tax authorities. The risk management system aims to detect risk-fraught cases in order to prevent tax evasion. Cases identified as risk-fraught by the system need to be checked manually by the responsible tax official. Although the technical details of risk management systems are kept secret, such systems are presumably based on artificial intelligence. If this is true, and especially if machine learning techniques are involved, this could lead to legally relevant problems. Examples from outside tax law show that fundamental errors may occur in AI-based risk assessments. Accordingly, the greatest challenge of using artificial intelligence in risk management systems is its control.

References

  1. Ahrendt C (2017) Alte Zöpfe neu geflochten – Das materielle Recht in der Hand von Programmierern. Neue Juristische Wochenschrift:537–540Google Scholar
  2. Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias – there’s software used across the country to predict future criminals. And it’s biased against blacks. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed 30 Sept 2018
  3. Braun Binder N (2016) Ausschließlich automationsgestützt erlassene Steuerbescheide und Bekanntgabe durch Bereitstellung zum Datenabruf. DStZ:625–635Google Scholar
  4. Braun Binder N (2019) Algorithmisch gesteuertes Risikomanagement in digitalisierten Besteuerungsverfahren. In: Unger S, von Ungern-Sternberg A (eds) Demokratie und Künstliche Intelligenz. Mohr Siebeck, Tübingen (in press). https://www.mohrsiebeck.com/buch/demokratie-und-kuenstliche-intelligenz-9783161581892
  5. Buell S (2018) MIT researcher: artificial intelligence has a race problem, and we need to fix it. Boston Magazine, 23 February 2018. https://www.bostonmagazine.com/news/2018/02/23/artificial-intelligence-race-dark-skin-bias. Accessed 30 Sept 2018
  6. Bundesrechnungshof (2012) Bericht nach § 99 BHO über den Vollzug der Steuergesetze, insbesondere im Arbeitnehmerbereich vom 17.1.2012Google Scholar
  7. Burgess M (2018) UK police are using AI to inform custodial decisions – but it could be discriminating against the poor. WIRED, 1 March 2018. http://www.wired.co.uk/article/police-ai-uk-durham-hart-checkpoint-algorithm-edit. Accessed 30 Sept 2018
  8. Ertel W (2016) Grundkurs Künstliche Intelligenz, 4th edn. Springer Vieweg, WiesbadenCrossRefGoogle Scholar
  9. Flores AW, Bechtel K, Lowenkamp CF (2016) False positives, false negatives, and false analyses. http://www.uscourts.gov/federal-probation-journal/2016/09/false-positives-false-negatives-and-false-analyses-rejoinder. Accessed 30 Sept 2018
  10. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, CambridgeGoogle Scholar
  11. Haunhorst S (2010) Risikomanagement in der Finanzverwaltung – ein Fall für die Finanzgerichte? DStR:2105–2110Google Scholar
  12. Kaplan J (2016) Artificial intelligence. What everyone needs to know. Oxford University Press, OxfordGoogle Scholar
  13. Kehl D, Guo P, Kessler S (2017) Algorithms in the criminal justice system: assessing the use of risk assessments in sentencing. Responsive Communities. https://dash.harvard.edu/handle/1/33746041. Accessed 30 Sept 2018
  14. Kirn S, Hengstenberg-Müller CD (2014) Intelligente (Software-)Agenten: Von der Automatisierung zur Autonomie? Verselbständigung technischer Systeme. MMR:225–232Google Scholar
  15. Kleinberg J, Mullainathan S, Raghavan M (2016) Inherent trade-offs in the fair determination of risk scores. https://arxiv.org/abs/1609.05807. Accessed 30 Sept 2018
  16. Knaus C (2017) Internal Centrelink records reveal flaws behind debt recovery system. The Guardian, 13 January 2017. https://www.theguardian.com/australia-news/2017/jan/13/internal-centrelink-records-reveal-flaws-behind-debt-recovery-system. Accessed 30 Sept 2018
  17. Krumm M (2017) Grundfragen des steuerlichen Datenverarbeitungsrechts. DB:2182–2195Google Scholar
  18. Martini M, Nink D (2017) Wenn Maschinen entscheiden… – vollautomatisierte Verwaltungsverfahren und der Persönlichkeitsschutz. NVwZ-extra 10:1–14. http://rsw.beck.de/rsw/upload/NVwZ/NVwZ-Extra_2017_10.pdf. Accessed 30 Sept 2018Google Scholar
  19. Münch L (2013) Außergerichtlicher Rechtsschutz bei Korrekturen gemäß § 129 AO und § 173 AO nach faktischer Selbstveranlagung. DStR:2150–2156Google Scholar
  20. Neumann L (2016) Stellungnahme des Chaos Computer Club. 13 April 2016. http://goo.gl/2Qm2uR. Accessed 30 Sept 2018
  21. Oswald M, Grace J, Urwin S, Barnes G (2017) Algorithmic risk assessment policing models: lessons from the Durham HART Model and ‘Experimental’ Proportionality. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3029345. Accessed 30 Sept 2018
  22. Pasquale F (2017) Secret algorithms threaten the rule of law. MIT Technology Review. https://www.technologyreview.com/s/608011/secret-algorithms-threaten-the-rule-of-law. Accessed 30 Sept 2018
  23. Präsident des Bundesrechnungshofes in seiner Funktion als Bundesbeauftragter für Wirtschaftlichkeit in der Verwaltung (2006) Probleme beim Vollzug der Steuergesetze. https://goo.gl/92gu6r. Accessed 30 Sept 2018
  24. Schmidt E (2008) Moderne Steuerungssysteme im Steuervollzug. DStJG 2008:37–57Google Scholar
  25. Seer R (2017) § 88 AO. In: Tipke K, Kruse HW (eds) AO/FGO. Kommentar, 150th edn. Otto Schmidt, KölnGoogle Scholar
  26. Stevenson (2017) Assessing risk assessment in action. George Mason University Legal Studies Research Paper Series, LS 17–25. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3016088. Accessed 30 Sept 2018
  27. Stiemerling O (2015) “Künstliche Intelligenz” – Automatisierung geistiger Arbeit, Big Data und das Internet der Dinge. CR:762–765Google Scholar
  28. Tutt A (2017) An FDA for algorithms. Adm Law Rev 69:83–123Google Scholar
  29. Urwin S (2018) Durham Constabulary written evidence submitted to the Common Science &Technology Committee inquiry into algorithms in decision-making. 20 February 2018. http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/science-and-technology-committee/algorithms-in-decisionmaking/written/78290.pdf. Accessed 30 Sept 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of LawUniversity of BaselBaselSwitzerland

Personalised recommendations