Advertisement

Gabor Frames: Characterizations and Coarse Structure

  • Karlheinz GröchenigEmail author
  • Sarah Koppensteiner
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter offers a systematic and streamlined exposition of the most important characterizations of Gabor frames over a lattice.

References

  1. 1.
    G. Ascensi, H.G. Feichtinger, N. Kaiblinger, Dilation of the Weyl symbol and Balian-Low theorem. Trans. Amer. Math. Soc. 366(7), 3865–3880 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    E.A. Azoff, Borel measurability in linear algebra. Proc. Amer. Math. Soc. 42, 346–350 (1974)MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Bekka, Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.J. Benedetto, C. Heil, D.F. Walnut, Differentiation and the Balian–Low theorem. J. Fourier Anal. Appl. 1(4), 355–402 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. Christensen, An introduction to frames and Riesz bases. Appl. Numer. Harmon. Anal. 2 edn. Birkhäuser/Springer, Cham (2016)Google Scholar
  6. 6.
    O. Christensen, H.O. Kim, R.Y. Kim, Gabor windows supported on \([-1,1]\) and compactly supported dual windows. Appl. Comput. Harmon. Anal. 28(1), 89–103 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Czaja, A.M. Powell, Recent developments in the Balian-Low theorem, in Harmonic Analysis and Applications, Applications Numerical Harmonic Analysis, pp. 79–100. Birkhäuser Boston, Boston, MA (2006)Google Scholar
  8. 8.
    I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992)CrossRefGoogle Scholar
  9. 9.
    I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Daubechies, H.J. Landau, Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl. 1(4), 437–478 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)MathSciNetCrossRefGoogle Scholar
  12. 12.
    H.G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H.G. Feichtinger, K. Gröchenig, Gabor Wavelets and the Heisenberg group: gabor expansions and short time Fourier transform from the group theoretical point of view, in Wavelets: A Tutorial in Theory and Applications, ed. by C.K. Chui (Academic Press, Boston, MA, 1992), pp. 359–398CrossRefGoogle Scholar
  14. 14.
    H.G. Feichtinger, N. Kaiblinger, Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc. 356(5), 2001–2023 (electronic) (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. G. Feichtinger, W. Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups, in Gabor Analysis and Algorithms, Applications Numerical Harmonic Analysis, pp. 233–266. Birkhäuser Boston, Boston, MA (1998)CrossRefGoogle Scholar
  16. 16.
    H.G. Feichtinger, F. Luef, Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. (Vol. Extra), 233–253 (2006)Google Scholar
  17. 17.
    D. Gabor, Theory of communication. J. IEE 93(26), 429–457 (1946)Google Scholar
  18. 18.
    K. Gröchenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis (Birkhäuser Boston Inc, Boston, MA, 2001)CrossRefGoogle Scholar
  19. 19.
    K. Gröchenig, Gabor frames without inequalities. Int. Math. Res. Not. IMRN (23), Article ID rnm111, 21 (2007)Google Scholar
  20. 20.
    K. Gröchenig, The mystery of Gabor frames. J. Fourier Anal. Appl. 20(4), 865–895 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Gröchenig, A.J.E.M. Janssen, Letter to the editor: a new criterion for Gabor frames. J. Fourier Anal. Appl. 8(5), 507–512 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Gröchenig, J. Ortega-Cerdà, J.L. Romero, Deformation of Gabor systems. Adv. Math. 277, 388–425 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    K. Gröchenig, J.L. Romero, J. Stöckler, Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Invent. Math. 211(3), 1119–1148 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    K. Gröchenig, J. Stöckler, Gabor frames and totally positive functions. Duke Math. J. 162(6), 1003–1031 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Heil, History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.S. Jakobsen, J. Lemvig, Density and duality theorems for regular Gabor frames. J. Funct. Anal. 270(1), 229–263 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    A.J.E.M. Janssen, Signal analytic proofs of two basic results on lattice expansions. Appl. Comput. Harmon. Anal. 1(4), 350–354 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A.J.E.M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.J.E.M. Janssen, The duality condition for Weyl-Heisenberg frames, in Gabor Analysis and Algorithms, Applications Numerical Harmonic Analysis, pp. 33–84. Birkhäuser Boston, Boston, MA (1998)CrossRefGoogle Scholar
  30. 30.
    A.J.E.M. Janssen, On generating tight Gabor frames at critical density. J. Fourier Anal. Appl. 9(2), 175–214 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A.J.E.M. Janssen, Zak transforms with few zeros and the tie, in Advances in Gabor analysis, Applications Numerical Harmonic Analysis, pp. 31–70. Birkhäuser Boston, Boston, MA (2003)CrossRefGoogle Scholar
  32. 32.
    J. Lemvig, K. Haahr Nielsen, Counterexamples to the B-spline conjecture for Gabor frames. J. Fourier Anal. Appl. 22(6), 1440–1451 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Lyubarskii, P.G. Nes, Gabor frames with rational density. Appl. Comput. Harmon. Anal. 34(3), 488–494 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Y.I. Lyubarskiĭ, Frames in the Bargmann space of entire functions, in Entire and subharmonic functions, vol. 11 of Adv. Soviet Math., pp. 167–180. Amer. Math. Soc., Providence, RI (1992)Google Scholar
  35. 35.
    J.V. Neumann, Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, English translation: “Mathematical Foundations of Quantum Mechanics,” (Princeton Univ, Press, 1932), p. 1955Google Scholar
  36. 36.
    M.A. Rieffel, Projective modules over higher-dimensional noncommutative tori. Canad. J. Math. 40(2), 257–338 (1988)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Ron, Z. Shen, Weyl-Heisenberg frames and Riesz bases in \(L_2(\mathbf{R}^d)\). Duke Math. J. 89(2), 237–282 (1997)MathSciNetCrossRefGoogle Scholar
  38. 38.
    K. Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)MathSciNetzbMATHGoogle Scholar
  39. 39.
    E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J. (1971). Princeton Mathematical Series, No. 32Google Scholar
  40. 40.
    D.F. Walnut, Lattice size estimates for Gabor decompositions. Monatsh. Math. 115(3), 245–256 (1993)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Wexler, S. Raz, Discrete Gabor expansions. Signal Process. 21(3), 207–220 (1990)CrossRefGoogle Scholar
  42. 42.
    Y.Y. Zeevi, M. Zibulski, M. Porat, Multi-window Gabor schemes in signal and image representations, in Gabor Analysis and Algorithms, Applications Numerical Harmonic Analysis, pp. 381–407. Birkhäuser Boston, Boston, MA (1998)CrossRefGoogle Scholar
  43. 43.
    M. Zibulski, Y.Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal. 4(2), 188–221 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations