Hardy Spaces with Variable Exponents
Chapter
First Online:
Abstract
In this paper, we make a survey on some recent developments of the theory of Hardy spaces with variable exponents in different settings.
References
- 1.E. Acerbi, G. Mingione, Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.V. Almeida, J.J. Betancor, A.J. Castro, L. Rodríguez-Mesa, Variable exponent Hardy spaces associated with discrete Laplacians on graphs. Sci. China Math. 62(1), 73–124 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.V. Almeida, J.J. Betancor, E. Dalmasso, L. Rodríguez-Mesa, Local Hardy spaces with variable exponents associated to non-negative self-adjoint operators satisfying Gaussian estimates. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00199-y
- 4.V. Almeida, J.J. Betancor, L. Rodríguez-Mesa, Anisotropic Hardy-Lorentz spaces with variable exponents. Canad. J. Math. 69(6), 1219–1273 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.S.N. Antontsev, J.F. Rodrigues, On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.P. Auscher, X.T. Duong, A. McIntosh, Boundedness of banach space valued singular integral and Hardy spaces. Unplublished Manuscript (2005)Google Scholar
- 7.P. Auscher, J.M.A. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ. 7, 2, 265–316 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.P. Auscher, A. McIntosh, E. Russ, Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(1), 192–248 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.M. Bownik, Anisotropic Hardy spaces and wavelets. Mem. Amer. Math. Soc. 164, 781, vi+122 (2003)Google Scholar
- 10.H.Q. Bui, Weighted Hardy spaces. Math. Nachr. 103, 45–62 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.J. Cao, D.-C. Chang, D. Yang, S. Yang, Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Amer. Math. Soc. 365(9), 4729–4809 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.J. Cao, S. Mayboroda, D. Yang, Local Hardy spaces associated with inhomogeneous higher order elliptic operators. Anal. Appl. (Singap.) 15(2), 137–224 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.A. Carbonaro, A. McIntosh, A.J. Morris, Local Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 23(1), 106–169 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.R.R. Coifman, A real variable characterization of \(H^{p}\). Studia Math. 51, 269–274 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, Heidelberg, 2013)zbMATHCrossRefGoogle Scholar
- 17.D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Pérez, The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)MathSciNetzbMATHGoogle Scholar
- 18.D. Cruz-Uribe, A. Fiorenza, C.J. Neugebauer, The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28(1), 223–238 (2003)MathSciNetzbMATHGoogle Scholar
- 19.D. Cruz-Uribe, L.-A.D. Wang, Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.D. Cruz-Uribe, L.-A.D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 369(2), 1205–1235 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.G. Dafni, H. Yue, Some characterizations of local bmo and \(h^1\) on metric measure spaces. Anal. Math. Phys. 2(3), 285–318 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, Univ. Freiburg im Breisgau, Mathematische Fakultät, 156 p. (2002)Google Scholar
- 23.L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017 (Springer, Heidelberg, 2011)zbMATHCrossRefGoogle Scholar
- 24.L. Diening, Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)MathSciNetzbMATHGoogle Scholar
- 25.L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)MathSciNetzbMATHGoogle Scholar
- 26.L. Diening, P. Hästö, S. Roudenko, Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.L. Diening, M. Ružička, Calderón-Zygmund operators on generalized Lebesgue spaces \(L^{p(\cdot )}\) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197–220 (2003)MathSciNetzbMATHGoogle Scholar
- 28.X.T. Duong, L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc. 18(4), 943–973 (2005) (electronic)Google Scholar
- 29.P.L. Duren, B.W. Romberg, A.L. Shields, Linear functionals on \(H^{p}\) spaces with \(0<p<1\). J. Reine Angew. Math. 238, 32–60 (1969)MathSciNetzbMATHGoogle Scholar
- 30.J. Dziubański, M. Preisner, Hardy spaces for semigroups with Gaussian bounds. Ann. Mat. Pura Appl. 197(3), 965–987 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.C. Fefferman, E.M. Stein, \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.A. Gogatishvili, A. Danelia, T. Kopaliani, Local Hardy-Littlewood maximal operator in variable Lebesgue spaces. Banach J. Math. Anal. 8(2), 229–244 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.D. Goldberg, A local version of real Hardy spaces. Duke Math. J. 46(1), 27–42 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.L. Grafakos, L. Liu, D. Yang, Radial maximal function characterizations for Hardy spaces on RD-spaces. Bull. Soc. Math. France 137(2), 225–251 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.P. Harjulehto, P. Hästö, V. Latvala, O. Toivanen, Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26(1), 56–60 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.P.A. Hästö, Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263–278 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Memoirs of the Amer. Math. Soc. 214 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.S. Hofmann, S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.R. Jiang, D. Yang, D. Yang, Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math. 24(3), 471–494 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.R. Jiang, D. Yang, Y. Zhou, Localized Hardy spaces associated with operators. Appl. Anal. 88(9), 1409–1427 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.M. Kemppainen, A note on local Hardy spaces. Forum Math. 29(4), 941–949 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\). Czechoslovak Math. J. 41(4)(116), 592–618 (1991)Google Scholar
- 43.R.H. Latter, A characterization of \(H^{p}({ R}^{n})\) in terms of atoms. Studia Math. 62(1), 93–101 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.A.K. Lerner, On modular inequalities in variable \(L^p\) spaces. Arch. Math. (Basel) 85(6), 538–543 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.F. Li, Z. Li, L. Pi, Variable exponent functionals in image restoration. Appl. Math. Comput. 216(3), 870–882 (2010)MathSciNetzbMATHGoogle Scholar
- 46.J. Liu, D. Yang, W. Yuan, Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456(1), 356–393 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.G. Mauceri, M.A. Picardello, F. Ricci, A Hardy space associated with twisted convolution. Adv. in Math. 39(3), 270–288 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.H. Nakano, Modulared Semi-ordered Linear Spaces (Maruzen Co. Ltd., Tokyo, 1950)zbMATHGoogle Scholar
- 50.A.S. Nekvinda, Hardy-Littlewood maximal operator on \(L^{p(x)}(\mathbb{R})\). Math. Inequal. Appl. 7(2), 255–265 (2004)Google Scholar
- 51.W. Orlicz, Über Konjugierte Exponentenfolgen. Studia Math. 3(1), 200–211 (1931)zbMATHCrossRefGoogle Scholar
- 52.M.M. Peloso, S. Secco, Local Riesz transforms characterization of local Hardy spaces. Collect. Math. 59(3), 299–320 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.L.S. Pick, M. Ružička, An example of a space \(L^{p(x)}\) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19(4), 369–371 (2001)Google Scholar
- 54.K.R. Rajagopal, M. Ružička, On the modelling of electrorheological materials. Mech. Res. Commun. 23(4), 401–407 (1996)zbMATHCrossRefGoogle Scholar
- 55.M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748 (Springer, Berlin, 2000)zbMATHCrossRefGoogle Scholar
- 56.Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Int. Equ. Oper. Theory 77(1), 123–148 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.I.I. Sharapudinov, The topology of the space \({\cal{L}}^{p(t)}([0,\,1])\). Mat. Zametki 26(4), 613–632, 655 (1979)Google Scholar
- 58.L. Song, L. Yan, Maximal function characterization for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J. Evol. Equations. 18(1), 221–243 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.L. Song, L. Yan, A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates. Adv. Math. 287, 463–484 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43 (Princeton University Press, Princeton, NJ, 1993)Google Scholar
- 61.E.M. Stein, G. Weiss, On the theory of harmonic functions of several variables. I. The theory of \(H^{p}\)-spaces. Acta Math. 103, 25–62 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
- 62.J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381 (Springer, Berlin, 1989)zbMATHCrossRefGoogle Scholar
- 63.L. Tang, Weighted local Hardy spaces and their applications. Illinois J. Math. 56(2), 453–495 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.H. Triebel, Theory of Function Spaces. Monographs in Mathematics, vol. 78 (Birkhäuser Verlag, Basel, 1983)Google Scholar
- 65.A. Uchiyama, A maximal function characterization of \(H^{p}\) on the space of homogeneous type. Trans. Amer. Math. Soc. 262(2), 579–592 (1980)MathSciNetzbMATHGoogle Scholar
- 66.M. Wilson, The intrinsic square function. Rev. Mat. Iberoam. 23(3), 771–791 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.A.S. Wineman, K.R. Rajagopal, On a constitutive theory for materials undergoing microstructural changes. Arch. Mech. (Arch. Mech. Stos.) 42(1), 53–75 (1990)Google Scholar
- 68.L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Amer. Math. Soc. 360(8), 4383–4408 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 69.D. Yang, J. Zhang, C. Zhuo, Variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Proc. Edinburgh Math. Soc. 61(3), 759–810 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 70.D. Yang, S. Yang, Local Hardy spaces of Musielak-Orlicz type and their applications. Sci. China Math. 55(8), 1677–1720 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 71.D. Yang, C. Zhuo, Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann. Acad. Sci. Fenn. Math. 41(1), 357–398 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 72.D. Yang, C. Zhuo, E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. 29(2), 245–270 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 73.X. Yan, D. Yang, W. Yuan, C. Zhuo, Variable weak Hardy spaces and their applications. J. Funct. Anal. 271(10), 2822–2887 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 74.V.V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system. Differ. Uravn. 33(1), 107–114, 143 (1997)Google Scholar
- 75.C. Zhuo, Y. Sawano, D. Yang, Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math. (Rozprawy Mat.) 520, 74 (2016)MathSciNetzbMATHGoogle Scholar
- 76.C. Zhuo, D. Yang, Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying Gaussian estimates. Nonlinear Anal. 141, 16–42 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 77.C. Zhuo, D. Yang, Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39(4), 1541–1577 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019