Advertisement

LiteMat, an Encoding Scheme with RDFS++ and Multiple Inheritance Support

  • Olivier CuréEmail author
  • Weiqin Xu
  • Hubert Naacke
  • Philippe Calvez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11762)

Abstract

In this paper, we extend LiteMat, an RDFS and owl:sameAs inference-enabled RDF encoding scheme, which is used in a distributed knowledge graph data management system. Our extensions enable to reach RDFS++ expressiveness by integrating owl:transitiveProperty and owl:inverseOf properties. Considering the latter, owl:inverseOf property, we propose a simple solution that involves a dictionary look-up at query run-time. For the former, we present an efficient approach to encode individuals involved in chain and tree structures of a transitive property. Moreover, our extension also provides an efficient solution to the multiple inheritance problem which sometimes encountered in the concept hierarchy of ontologies. We provide details of a distributed implementation and highlight the efficiency of our encoding and query processing approaches over large synthetic datasets.

References

  1. 1.
    Curé, O., Blin, G.: RDF Database Systems: Triples Storage and SPARQL Query Processing. Morgan Kaufmann (2015)Google Scholar
  2. 2.
    Curé, O., Naacke, H., Randriamalala, T., Amann, B.: LiteMat: a scalable, cost-efficient inference encoding scheme for large RDF graphs. In: 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, pp. 1823–1830 (2015)Google Scholar
  3. 3.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWl knowledge base systems. J. Web Sem. 3(2–3), 158–182 (2005)CrossRefGoogle Scholar
  4. 4.
    Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., Vassilvitskii, S.: Connected components in MapReduce and beyond. In: Proceedings of the ACM Symposium on Cloud Computing, SOCC 2014, pp. 18:1–18:13. ACM, New York (2014)Google Scholar
  5. 5.
    Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal RDFs. Web Semant. 7(3), 220–234 (2009)CrossRefGoogle Scholar
  6. 6.
    Ren, X., Curé, O., Naacke, H., Lhez, J., Ke, L.: Strider\({}^{\text{r}}\): massive and distributed RDF graph stream reasoning. In: 2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA, 11–14 December 2017, pp. 3358–3367 (2017)Google Scholar
  7. 7.
    Rodríguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, KR 2012, pp. 308–318. AAAI Press (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olivier Curé
    • 1
    Email author
  • Weiqin Xu
    • 1
    • 2
  • Hubert Naacke
    • 3
  • Philippe Calvez
    • 2
  1. 1.LIGM (UMR 8049), CNRS, UPEMMarne-la-ValléeFrance
  2. 2.ENGIE CRIGEN CSAI LabSaint-DenisFrance
  3. 3.Sorbonne Universités, UPMC Univ Paris 06ParisFrance

Personalised recommendations