Developing a Knowledge Graph for a Question Answering System to Answer Natural Language Questions on German Grammar

  • Stefan FalkeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11762)


Question Answering Systems for retrieving information from Knowledge Graphs (KG) have become a major area of interest in recent years. Current systems search for words and entities but cannot search for grammatical phenomena. The purpose of this paper is to present our research on developing a QA System that answers natural language questions about German grammar.

Our goal is to build a KG which contains facts and rules about German grammar, and is also able to answer specific questions about a concrete grammatical issue. An overview of the current research in the topic of QA systems and ontology design is given and we show how we plan to construct the KG by integrating the data in the grammatical information system Grammis, hosted by the Leibniz-Institut für Deutsche Sprache (IDS). In this paper, we describe the construction of the initial KG, sketch our resulting graph, and demonstrate the effectiveness of such an approach. A grammar correction component will be part of a later stage. The paper concludes with the potential areas for future research.


Knowledge Graph Ontology development German grammar Question Answering System 



I would like to thank Prof. Heiko Paulheim for his valuable feedback and support in the realization of this work.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  2. 2.
    Bhirud, N., Bhavsar, R., Pawar, B.: Grammar checkers for natural languages: a review. Int. J. Nat. Lang. Comput. 6(4), 1–13 (2017)CrossRefGoogle Scholar
  3. 3.
    Bischofberger, W.R., Pomberger, G.: Prototyping-Oriented Software Development: Concepts and Tools. Springer, Heidelberg (2012). Scholar
  4. 4.
    Cimiano, P., Buitelaar, P., McCrae, J., Sintek, M.: Lexinfo: a declarative model for the lexicon-ontology interface. Web Seman. Sci. Serv. Agents World Wide Web 9(1), 29–51 (2011)CrossRefGoogle Scholar
  5. 5.
    Cockburn, A.: Agile Software Development, vol. 177. Addison-Wesley, Boston (2002)zbMATHGoogle Scholar
  6. 6.
    Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Ontological engineering: what are ontologies and how can we build them? In: Semantic web services: Theory, tools and applications, pp. 44–70. IGI Global (2007)Google Scholar
  7. 7.
    Crysmann, B., Bertomeu, N., Adolphs, P., Flickinger, D., Klüwer, T.: Hybrid processing for grammar and style checking. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 153–160. Association for Computational Linguistics (2008)Google Scholar
  8. 8.
    Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS) (2016)Google Scholar
  9. 9.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering (1997)Google Scholar
  10. 10.
    Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies (1995)Google Scholar
  11. 11.
    Hamp, B., Feldweg, H.: Germanet-a lexical-semantic net for German. In: Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications (1997)Google Scholar
  12. 12.
    Hirschman, L., Gaizauskas, R.: Natural language question answering: the view from here. Nat. Lang. Eng. 7(4), 275–300 (2001)CrossRefGoogle Scholar
  13. 13.
    Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Seman. Web 8(6), 895–920 (2017)CrossRefGoogle Scholar
  14. 14.
    Lang, C., Schwinn, H., Suchowolec, K.: Grammatische Terminologie am IDS-ein terminologisches Online-Wörterbuch als ein vernetztes Begriffssystem. Sprachreport (2018)Google Scholar
  15. 15.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web?: a survey. Seman. Web 2(2), 125–155 (2011)Google Scholar
  16. 16.
    Manchanda, B., Athavale, V.A., Kumar Sharma, S.: Various techniques used for grammar checking. Int. J. Comput. Appl. Inf. Technol. 9(1), 177 (2016)Google Scholar
  17. 17.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  18. 18.
    Marx, E., Usbeck, R., Ngomo, A.C.N., Höffner, K., Lehmann, J., Auer, S.: Towards an open question answering architecture. In: Proceedings of the 10th International Conference on Semantic Systems, pp. 57–60. ACM (2014)Google Scholar
  19. 19.
    McCrae, J., et al.: Interchanging lexical resources on the semantic web. Lang. Resour. Eval. 46(4), 701–719 (2012)CrossRefGoogle Scholar
  20. 20.
    McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011). Scholar
  21. 21.
    Naber, D.: A rule-based style and grammar checker (2003)Google Scholar
  22. 22.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Seman. web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  23. 23.
    Ripp, S., Falke, S.: Questions categories on German grammar information systems and their operability, article in preperationGoogle Scholar
  24. 24.
    Schmidt-Wigger, A.: Grammar and style checking for German. In: Proceedings of CLAW, vol. 98, pp. 76–86. Citeseer (1998)Google Scholar
  25. 25.
    Schneider, R., Schwinn, H.: Hypertext, Wissensnetz und Datenbank: die Webinformationssysteme Grammis und ProGr@mm, pp. 337–346. Ansichten und Einsichten, Institut für Deutsche Sprache, Mannheim (2014) Google Scholar
  26. 26.
    Sharma, S.K.: Rule based grammar checking systems. Int. J. Comput. Appl. Inf. Technol. 10(1), 217–220 (2016)MathSciNetGoogle Scholar
  27. 27.
    Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over linked data. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 100–140. Springer, Cham (2014). Scholar
  28. 28.
    Usbeck, R., Ngomo, A.-C.N., Bühmann, L., Unger, C.: HAWK – Hybrid question answering using linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 353–368. Springer, Cham (2015). Scholar
  29. 29.
    Uschold, M., King, M.: Towards a methodology for building ontologies. In: Workshop on Basic Ontological Issues in Knowledge Sharing (IJCAI) (1995)Google Scholar
  30. 30.
    Zifonun, G., Hoffmann, L., Strecker, B., Ballweg, J.: Grammatik der deutschen Sprache, vol. 1. Walter de Gruyter, Berlin (1997)Google Scholar
  31. 31.
    Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over rdf: a graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 313–324. ACM (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leibniz-Institut für Deutsche SpracheMannheimGermany

Personalised recommendations