Advertisement

Semantic Relatedness as an Inter-facet Metric for Facet Selection over Knowledge Graphs

  • Leila FeddoulEmail author
  • Sirko Schindler
  • Frank Löffler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11762)

Abstract

Faceted Browsing is a wide-spread approach for exploratory search. Without requiring an in-depth knowledge of the domain, users can narrow down a resource set until it fits their need. An increasing amount of data is published either directly as Linked Data or is at least annotated using concepts from the Linked Data Cloud. This allows identifying commonalities and differences among resources beyond the comparison of mere string representations of metadata.

As the size of data repositories increases, so does the range of covered domains and the number of properties that can provide the basis for a new facet. Manually predefining suitable facet collections becomes impractical. We present our initial work on automatically creating suitable facets for a semantically annotated set of resources. In particular, we address two problems arising with automatic facet generation: (1) Which facets are applicable to the current set of resources and (2) which reasonably sized subset provides the best support to users?

Keywords

Faceted Browsing Knowledge graph Exploratory search 

References

  1. 1.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014).  https://doi.org/10.1145/2629489CrossRefGoogle Scholar
  2. 2.
    Wei, B., Liu, J., Zheng, Q., Zhang, W., Fu, X., Feng, B.: A survey of faceted search. J. Web Eng. 12(1–2), 41–64 (2013)Google Scholar
  3. 3.
    Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets: a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2016).  https://doi.org/10.1007/s10844-016-0413-8CrossRefGoogle Scholar
  4. 4.
    Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_40CrossRefGoogle Scholar
  5. 5.
    Schraefel, M.C., Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.: The evolving mSpace platform: leveraging the semantic web on the trail of the Memex. In: Proceedings of the Sixteenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT 2005, pp. 174–183. ACM, New York (2005).  https://doi.org/10.1145/1083356.1083391
  6. 6.
    Huynh, D., Karger, D.: Parallax and companion: set-based browsing for the data web. Technical report, Metaweb Technologies Inc. (2009)Google Scholar
  7. 7.
    Heim, P., Ziegler, J., Lohmann, S.: gFacet: a browser for the web of data. In: Proceedings of the International Workshop on Interacting with Multimedia Content in the Social Semantic Web (IMC-SSW 2008), Aachen (2008)Google Scholar
  8. 8.
    Stadler, C., Martin, M., Auer, S.: Exploring the web of spatial data with Facete. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, pp. 175–178. ACM, New York (2014).  https://doi.org/10.1145/2567948.2577022
  9. 9.
    Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted search over RDF-based knowledge graphs. Web Semant. Sci. Serv. Agents World Wide Web 37, (2016).  https://doi.org/10.2139/ssrn.3199228
  10. 10.
    Moreno-Vega, J., Hogan, A.: GraFa: scalable faceted browsing for RDf graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 301–317. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00671-6_18CrossRefGoogle Scholar
  11. 11.
    Li, C., Yan, N., Roy, S.B., Lisham, L., Das, G.: Facetedpedia: dynamic generation of query-dependent faceted interfaces for wikipedia. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 651–660. ACM, New York (2010).  https://doi.org/10.1145/1772690.1772757
  12. 12.
    Li, Y., Bandar, Z.A., Mclean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003).  https://doi.org/10.1109/TKDE.2003.1209005CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heinz Nixdorf Chair for Distributed Information SystemsFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of Data ScienceGerman Aerospace Center DLRJenaGermany

Personalised recommendations