Skip to main content

Microfluidic Sperm Selection

  • Chapter
  • First Online:
Male Infertility

Abstract

With advances in assisted reproduction techniques, the degree of demand on the male gamete has decreased to such a level that the role of the sperm has been reduced to a mere packet of DNA to be released into the cytoplasm of the oocyte. Now, we know that regardless of appearance, this package may contain unpleasant surprises such as sperm DNA damage. Conventional semen processing techniques aim to recover motile spermatozoa, separating them from seminal plasma, debris, and immotile sperm. Nevertheless, motility is a guarantee of vitality but is not a guarantee of chromatin integrity. It would be ideal if we could access the chromatin status of each spermatozoon prior to injection, but this is not feasible without destroying it or compromising its functionality. Probably, the most effective approach would be to access male gamete functionality indirectly. Thus, the sperm would be tested not for what it is but for what it can do. Microfluidic devices can help with this task subjecting the male gametes to several selection factors in a controlled environment. The collaborative work of engineers, biologists, and embryologists can lead to the development of efficient and cost-effective platforms improving the treatment of male factor infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26. PubMed PMID: 26386468. PMCID: PMC4594619. Epub 2015/09/19. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fitzpatrick JL, Garcia-Gonzalez F, Evans JP. Linking sperm length and velocity: the importance of intramale variation. Biol Lett. 2010;6(6):797–9. PubMed PMID: 20484233. PMCID: PMC3001355. Epub 2010/05/19. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. Mol Hum Reprod. 2014;20(12):1180–9.

    Article  PubMed  Google Scholar 

  4. Moscatelli N, Spagnolo B, Pisanello M, Lemma ED, De Vittorio M, Zara V, et al. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential. Sci Rep. 2017;7(1):17931. PubMed PMID: 29263401. PMCID: PMC5738389. Epub 2017/12/20. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holt WV, Van Look KJ. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction. 2004;127(5):527–35. PubMed PMID: 15129008. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol Hum Reprod. 2015;21(6):491–501. PubMed PMID: 25753084. Epub 2015/03/09. eng.

    Article  PubMed  Google Scholar 

  7. Laurentino S, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity. Reproduction. 2016;151(5):R71–8. PubMed PMID: 26884419. Epub 2016/02/16. eng.

    Article  CAS  PubMed  Google Scholar 

  8. Kantsler V, Dunkel J, Blayney M, Goldstein RE. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife. 2014;2014(3):e02403.

    Article  CAS  Google Scholar 

  9. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirkman-Brown JC, Smith DJ. Sperm motility: is viscosity fundamental to progress? Mol Hum Reprod. 2011;17(8):539–44. PubMed PMID: 21653751. Epub 2011/06/08. eng.

    Article  PubMed  Google Scholar 

  11. Hourcade JD, Pérez-Crespo M, Fernández-González R, Pintado B, Gutiérrez-Adán A. Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod Biol Endocrinol. 2010;8:9. PubMed PMID: 20113521. PMCID: PMC2825232. Epub 2010/01/31. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menkveld R, Holleboom CA, Rhemrev JP. Measurement and significance of sperm morphology. Asian J Androl. 2011;13(1):59–68. PubMed PMID: 21076438. PMCID: PMC3739393. Epub 2010/11/15. eng.

    Article  PubMed  Google Scholar 

  13. Aitken RJ. Not every sperm is sacred; a perspective on male infertility. Mol Hum Reprod. 2018;24(6):287–98. PubMed PMID: 29546342. eng.

    CAS  PubMed  Google Scholar 

  14. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436(3):687–98. PubMed PMID: 21470189. eng.

    Article  CAS  PubMed  Google Scholar 

  15. Amaral A, Lourenço B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–74. PubMed PMID: 23901129. Epub 2013/10/01. eng.

    Article  CAS  PubMed  Google Scholar 

  16. Amaral S, S Tavares R, Baptista M, Sousa MI, Silva A, Escada-Rebelo S, et al. Mitochondrial functionality and chemical compound action on sperm function. Curr Med Chem. 2016;23(31):3575–606. PubMed PMID: 27109577. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrín P, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One. 2011;6(3):e18112. PubMed PMID: 21448461. PMCID: PMC3063179. Epub 2011/03/23. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19(1):5–14. PubMed PMID: 26680031. PMCID: PMC5227674. eng.

    CAS  PubMed  Google Scholar 

  19. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301. PubMed PMID: 19759174. Epub 2009/09/16. eng.

    Article  CAS  PubMed  Google Scholar 

  20. Ishimoto K, Gaffney EA. A study of spermatozoan swimming stability near a surface. J Theor Biol. 2014;360:187–99. PubMed PMID: 25014474. Epub 2014/07/08. eng.

    Article  PubMed  Google Scholar 

  21. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci USA. 2012;109(21):8007–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nosrati R, Driouchi A, Yip CM, Sinton D. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat Commun. 2015;6:8703. PubMed PMID: 26555792. PMCID: PMC4667638. Epub 2015/11/10. eng.

    Article  CAS  PubMed  Google Scholar 

  23. Bukatin A, Kukhtevich I, Stoop N, Dunkel J, Kantsler V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc Natl Acad Sci USA. 2015;112(52):15904–9. PubMed PMID: 26655343. PMCID: PMC4703022. Epub 2015/12/10. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith DJ, Gaffney EA, Gadêlha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil Cytoskeleton. 2009;66(4):220–36. PubMed PMID: 19243024. eng.

    Article  CAS  PubMed  Google Scholar 

  25. El-Sherry TM, Elsayed M, Abdelhafez HK, Abdelgawad M. Characterization of rheotaxis of bull sperm using microfluidics. Integrative Biology (United Kingdom). 2014;6(12):1111–21.

    Google Scholar 

  26. Ishimoto K, Gaffney EA. Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J R Soc Interface. 2015;12(106). PubMed PMID: 25878133. PMCID: PMC4424697. eng.

    Google Scholar 

  27. Zhang Z, Liu J, Meriano J, Ru C, Xie S, Luo J, et al. Human sperm rheotaxis: a passive physical process. Sci Rep. 2016;6:23553. PubMed PMID: 27005727. PMCID: PMC4804285. Epub 2016/03/23. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tung CK, Ardon F, Fiore AG, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip. 2014;14(7):1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, et al. Microfluidics for sperm analysis and selection. Nat Rev Urol. 2017;14(12):707–30. PubMed PMID: 29089604. Epub 2017/10/31. eng.

    Article  PubMed  Google Scholar 

  30. Bahat A, Eisenbach M. Sperm thermotaxis. Mol Cell Endocrinol. 2006;252(1–2):115–9. PubMed PMID: 16672171. Epub 2006/05/02. eng.

    Article  CAS  PubMed  Google Scholar 

  31. Boryshpolets S, Pérez-Cerezales S, Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod. 2015;30(4):884–92. PubMed PMID: 25609239. Epub 2015/01/21. eng.

    Article  PubMed  Google Scholar 

  32. Bahat A, Eisenbach M, Tur-Kaspa I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum Reprod. 2005;20(8):2118–21. PubMed PMID: 15817587. Epub 2005/04/07. eng.

    Google Scholar 

  33. Bahat A, Caplan SR, Eisenbach M. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS One. 2012;7(7):e41915. PubMed PMID: 22848657. PMCID: PMC3405043. Epub 2012/07/25. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang H, Suarez SS. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol Reprod. 2010;83(4):507–13. PubMed PMID: 20463353. PMCID: PMC2957157. Epub 2010/05/12. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perez-Cerezales S, Boryshpolets S, Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J Androl. 2015;17(4):628–32. PubMed PMID: 25999361. PMCID: PMC4492055. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077–84.

    Article  PubMed  Google Scholar 

  37. Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.

    Article  PubMed  Google Scholar 

  38. Maettner R, Sterzik K, Isachenko V, Strehler E, Rahimi G, Alabart JL, et al. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity. Andrologia. 2014;46(5):547–55. PubMed PMID: 23692628. eng.

    Article  CAS  PubMed  Google Scholar 

  39. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8. PubMed PMID: 1351601. eng.

    Article  CAS  PubMed  Google Scholar 

  40. Henkel R. Sperm preparation: state-of-the-art--physiological aspects and application of advanced sperm preparation methods. Asian J Androl. 2012;14(2):260–9. PubMed PMID: 22138904. PMCID: PMC3735088. Epub 2011/12/05. eng.

    Article  CAS  PubMed  Google Scholar 

  41. Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic-based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol. 2018;7(Suppl 3):S336–S47. PubMed PMID: 30159240. PMCID: PMC6087839. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87.

    Article  PubMed  Google Scholar 

  43. Hanevik HI, Hessen DO, Sunde A, Breivik J. Can IVF influence human evolution? Hum Reprod. 2016;31(7):1397–402. PubMed PMID: 27094480. Epub 2016/04/19. eng.

    Article  PubMed  Google Scholar 

  44. Lopez-Garcia MD, Monson RL, Haubert K, Wheeler MB, Beebe DJ. Sperm motion in a microfluidic fertilization device. Biomed Microdevices. 2008;10(5):709–18. PubMed PMID: 18454318. eng.

    Article  CAS  PubMed  Google Scholar 

  45. Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hussain YH, Sadilek M, Salad S, Zimmer RK, Riffell JA. Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Dev Biol. 2017;422(2):186–97. PubMed PMID: 28088316. Epub 2017/01/11. eng.

    Article  CAS  PubMed  Google Scholar 

  47. Ko YJ, Maeng JH, Lee BC, Lee S, Hwang SY, Ahn Y. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal Sci. 2012;28(1):27–32. PubMed PMID: 22232220. eng.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Xiao RR, Yin T, Zou W, Tang Y, Ding J, et al. Generation of gradients on a microfluidic device: toward a high-throughput investigation of spermatozoa chemotaxis. PLoS One. 2015;10(11):e0142555. PubMed PMID: 26555941. PMCID: PMC4640579. Epub 2015/11/10. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep. 2018;8(1):2902. PubMed PMID: 29440764. PMCID: PMC5811574. Epub 2018/02/13. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suarez SS, Wu M. Microfluidic devices for the study of sperm migration. Mol Hum Reprod. 2017;23(4):227–34. PubMed PMID: 27385726. eng.

    CAS  PubMed  Google Scholar 

  51. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.

    Article  CAS  PubMed  Google Scholar 

  52. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  53. Matsuura K, Takenami M, Kuroda Y, Hyakutake T, Yanase S, Naruse K. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reprod Biomed Online. 2012;24(1):109–15. PubMed PMID: 22116072. Epub 2011/09/16. eng.

    Article  PubMed  Google Scholar 

  54. Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013;99(2):400–7.

    Article  PubMed  Google Scholar 

  55. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertility and Sterility. 2016;105(2):315–21.e1.

    Article  CAS  PubMed  Google Scholar 

  56. Seo DB, Agca Y, Feng ZC, Critser JK. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluid. 2007;3(5):561–70.

    Article  Google Scholar 

  57. Fujii Y, Motoyama H, Hiraguchi K, Kobashi C, Kunitomi K. A simple method for recovering the motile spermatozoa from extremely low quality sperm samples. Hum Reprod. 1997;12(6):1218–21.

    Article  CAS  PubMed  Google Scholar 

  58. Hinting A, Lunardhi H. Better sperm selection for intracytoplasmic sperm injection with the side migration technique. Andrologia. 2001;33(6):343–6.

    Article  CAS  PubMed  Google Scholar 

  59. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small. 2013;9(20):3374–84.

    Article  CAS  PubMed  Google Scholar 

  60. Chinnasamy T, Kingsley JL, Inci F, Turek PJ, Rosen MP, Behr B, et al. Guidance and Self-Sorting of Active Swimmers: 3D Periodic Arrays Increase Persistence Length of Human Sperm Selecting for the Fittest. Adv Sci (Weinh). 2018;5(2):1700531. PubMed PMID: 29610725. PMCID: PMC5827459. Epub 2017/12/27. eng.

    Article  CAS  Google Scholar 

  61. Quinn MM, Jalalian L, Ribeiro S, Ona K, Demirci U, Cedars MI, et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod. 2018. PubMed PMID: 30007319. Epub 2018/07/10. eng.

    Google Scholar 

  62. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50.

    Article  CAS  PubMed  Google Scholar 

  63. De Martin H, Cocuzza MS, Tiseo BC, Wood GJA, Miranda EP, Monteleone PAA, et al. Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J Assist Reprod Genet. 2017;34(12):1699–708. PubMed PMID: 28929253. PMCID: PMC5714818. Epub 2017/09/19. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wu JK, Chen PC, Lin YN, Wang CW, Pan LC, Tseng FG. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst. 2017;142(6):938–44. PubMed PMID: 28220153. eng.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Martin, H., Wood, G.J.A., Monteleone, P.A.A. (2020). Microfluidic Sperm Selection. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics