Skip to main content

Assisted Reproductive Technology and Its Impact on Male Infertility Management

  • Chapter
  • First Online:
Male Infertility

Abstract

Approximately 12–15% of sexually active couples are infertile. The etiology of infertility is likely multifactorial. Previous work has estimated that 50% of infertility is attributed to the female, 30% to the male, and 20% to both the male and female. Recent advances, mainly in the assisted reproductive technologies (ART), have allowed some couples with severe male factor infertility to establish a pregnancy. The most significant advance is in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). Previously, these couples had at best only a remote chance of establishing a pregnancy due to severely reduced sperm concentration, compromised sperm function, or uncorrectable obstruction. As a result of the high success of IVF/ICSI, and as a by-product of the fact that fertility visits are often initiated by the female partner, the practice of modern assisted reproductive technology (ART) can oftentimes proceed without a complete evaluation of the male partner. Instead, almost any couple, even those with a severe male factor, after being evaluated by only a reproductive endocrinologist, can theoretically become pregnant using IVF/ICSI. This, however, can miss significant medical pathology in the male, and this common practice needs to be reevaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sherins RJ, Thorsell LP, Dorfmann A, Dennison-Lagos L, Calvo LP, Krysa L, et al. Intracytoplasmic sperm injection facilitates fertilization even in the most severe forms of male infertility: pregnancy outcome correlates with maternal age and number of eggs available. Fertil Steril. 1995;64(2):369–75.

    Article  CAS  PubMed  Google Scholar 

  3. Rubino P, Vigano P, Luddi A, Piomboni P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update. 2016;22(2):194–227.

    PubMed  Google Scholar 

  4. Alukal JP, Lipshultz LI. Why treat the male in the era of assisted reproduction? Semin Reprod Med. 2009;27(2):109–14.

    Article  PubMed  Google Scholar 

  5. Nangia AK, Luke B, Smith JF, Mak W, Stern JE, Group SW. National study of factors influencing assisted reproductive technology outcomes with male factor infertility. Fertil Steril. 2011;96(3):609–14.

    Article  PubMed  Google Scholar 

  6. Eisenberg ML, Lathi RB, Baker VL, Westphal LM, Milki AA, Nangia AK. Frequency of the male infertility evaluation: data from the national survey of family growth. J Urol. 2013;189(3):1030–4.

    Article  PubMed  Google Scholar 

  7. Nangia AK, Likosky DS, Wang D. Distribution of male infertility specialists in relation to the male population and assisted reproductive technology centers in the United States. Fertil Steril. 2010;94(2):599–609.

    Article  PubMed  Google Scholar 

  8. Kolettis PN, Sabanegh ES. Significant medical pathology discovered during a male infertility evaluation. J Urol. 2001;166(1):178–80.

    Article  CAS  PubMed  Google Scholar 

  9. Eisenberg ML, Li S, Behr B, Pera RR, Cullen MR. Relationship between semen production and medical comorbidity. Fertil Steril. 2015;103(1):66–71.

    Article  PubMed  Google Scholar 

  10. Ethics Committee of the American Society for Reproductive M. Disparities in access to effective treatment for infertility in the United States: an ethics committee opinion. Fertil Steril. 2015;104(5):1104–10.

    Article  Google Scholar 

  11. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  CAS  PubMed  Google Scholar 

  12. Ferguson-Smith MA, Lennox B, Mack WS, Stewart JS. Klinefelter’s syndrome; frequency and testicular morphology in relation to nuclear sex. Lancet. 1957;273(6987):167–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  14. Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, et al. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA. 1992;267(13):1794–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hanson BM, Eisenberg ML, Hotaling JM. Male infertility: a biomarker of individual and familial cancer risk. Fertil Steril. 2018;109(1):6–19.

    Article  CAS  PubMed  Google Scholar 

  16. Bach PV, Patel N, Najari BB, Oromendia C, Flannigan R, Brannigan R, et al. Changes in practice patterns in male infertility cases in the United States: the trend toward subspecialization. Fertil Steril. 2018;110(1):76–82.

    Article  PubMed  Google Scholar 

  17. Garceau L, Henderson J, Davis LJ, Petrou S, Henderson LR, McVeigh E, et al. Economic implications of assisted reproductive techniques: a systematic review. Hum Reprod. 2002;17(12):3090–109.

    Article  CAS  PubMed  Google Scholar 

  18. Mehta A, Nangia AK, Dupree JM, Smith JF. Limitations and barriers in access to care for male factor infertility. Fertil Steril. 2016;105(5):1128–37.

    Article  PubMed  Google Scholar 

  19. Practice Committee of the American Society for Reproductive M, Practice Committee of the Society for Assisted Reproductive T. Genetic considerations related to intracytoplasmic sperm injection (ICSI). Fertil Steril. 2006;86(5 Suppl 1):S103–5.

    Google Scholar 

  20. Bulletins-Gynecology ACoP. ACOG Practice Bulletin. Clinical management guidelines for obstetrician-gynecologists number 34, February 2002. Management of infertility caused by ovulatory dysfunction. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2002;99(2):347–58.

    Article  Google Scholar 

  21. Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: data from the 2002 National Survey of Family Growth. Vital Health Stat. 2005;23(25):1–160.

    Google Scholar 

  22. Dupree JM, Dickey RM, Lipshultz LI. Inequity between male and female coverage in state infertility laws. Fertil Steril. 2016;105(6):1519–22.

    Article  PubMed  Google Scholar 

  23. Griffin M, Panak WF. The economic cost of infertility-related services: an examination of the Massachusetts infertility insurance mandate. Fertil Steril. 1998;70(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  24. Keel BA. The semen analysis. In: Keel BA, Webster BW, editors. CRC handbook of the laboratory diagnosis and treatment of infertility. 1st ed. Boca Raton: CRC Press; 1990. p. 27–69.

    Google Scholar 

  25. Mortimer D. Practical laboratory andrology. New York: Oxford University Press; 1994.

    Google Scholar 

  26. Keel BA. Within- and between-subject variation in semen parameters in infertile men and normal semen donors. Fertil Steril. 2006;85(1):128–34.

    Article  PubMed  Google Scholar 

  27. Lu JC, Huang YF, Lu NQ. WHO laboratory manual for the examination and processing of human semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue. 2010;16(10):867–71.

    PubMed  Google Scholar 

  28. Handelsman DJ, Cooper TG. Foreword to semen analysis in 21st century medicine special issue in Asian journal of andrology. Asian J Androl. 2010;12(1):7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ford WC. Comments on the release of the 5th edition of the WHO laboratory manual for the examination and processing of human semen. Asian J Androl. 2010;12(1):59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boyd JC. Defining laboratory reference values and decision limits: populations, intervals, and interpretations. Asian J Androl. 2010;12(1):83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brazil C. Practical semen analysis: from a to Z. Asian J Androl. 2010;12(1):14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    Article  CAS  PubMed  Google Scholar 

  33. Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009;19(5):638–59.

    Article  CAS  PubMed  Google Scholar 

  34. James PS, Wolfe CA, Mackie A, Ladha S, Prentice A, Jones R. Lipid dynamics in the plasma membrane of fresh and cryopreserved human spermatozoa. Hum Reprod. 1999;14(7):1827–32.

    Article  CAS  PubMed  Google Scholar 

  35. Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16(5):449–57.

    Article  CAS  PubMed  Google Scholar 

  36. Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.

    Article  CAS  PubMed  Google Scholar 

  37. Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Oral anti-oxidant use for male partners of couples undergoing fertility treatments. Hum Reprod. 2010;25:I119–I20.

    Google Scholar 

  38. Deepinder F, Cocuzza M, Agarwal A. Should seminal oxidative stress measurement be offered routinely to men presenting for infertility evaluation? Endocr Pract. 2008;14(4):484–91.

    Article  PubMed  Google Scholar 

  39. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.

    Article  PubMed  Google Scholar 

  40. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991;88(24):11003–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacob RA, Kelley DS, Pianalto FS, Swendseid ME, Henning SM, Zhang JZ, et al. Immunocompetence and oxidant defense during ascorbate depletion of healthy men. Am J Clin Nutr. 1991;54(6 Suppl):1302S–9S.

    Article  CAS  PubMed  Google Scholar 

  42. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26(8):427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  44. Bedaiwy M, Agarwal A, Said TM, Goldberg JM, Sharma RK, Worley S, et al. Role of total antioxidant capacity in the differential growth of human embryos in vitro. Fertil Steril. 2006;86(2):304–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hosseini SM, Forouzanfar M, Hajian M, Asgari V, Abedi P, Hosseini L, et al. Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? J Assist Reprod Genet. 2009;26(6):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith GD, Takayama S. Gamete and embryo isolation and culture with microfluidics. Theriogenology. 2007;68(Suppl 1):S190–5.

    Article  PubMed  Google Scholar 

  47. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9(6):367–76.

    Article  CAS  PubMed  Google Scholar 

  48. Aitken RJ, Baker HW. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10(7):1736–9.

    Article  CAS  PubMed  Google Scholar 

  49. Twigg J, Irvine DS, Houston P, Fulton N, Michael L, Aitken RJ. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod. 1998;4(5):439–45.

    Article  CAS  PubMed  Google Scholar 

  50. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.

    Article  CAS  PubMed  Google Scholar 

  51. Larson KL, Brannian JD, Timm BK, Jost LK, Evenson DP. Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum Reprod. 1999;14(8):2015–9.

    Article  CAS  PubMed  Google Scholar 

  52. Jackson RE, Bormann CL, Hassun PA, Rocha AM, Motta EL, Serafini PC, et al. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertil Steril. 2010;94(7):2626–30.

    Article  CAS  PubMed  Google Scholar 

  53. Bedford JM. Changes in the electrophoretic properties of rabbit spermatozoa during passage through the epididymis. Nature. 1963;200:1178–80.

    Article  CAS  PubMed  Google Scholar 

  54. Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20(8):2261–70.

    Article  CAS  PubMed  Google Scholar 

  55. Aitken RJ, Hanson AR, Kuczera L. Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum Reprod. 2011;26(8):1955–64.

    Article  PubMed  Google Scholar 

  56. Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet. 2016;33(6):679–88.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moutaffian H, Parinaud J. Selection and characterization of human acrosome reacted spermatozoa. Hum Reprod. 1995;10(11):2948–51.

    Article  CAS  PubMed  Google Scholar 

  58. Hipler UC, Schreiber G, Wollina U. Reactive oxygen species in human semen: investigations and measurements. Arch Androl. 1998;40(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  59. Krausz C, West K, Buckingham D, Aitken RJ. Development of a technique for monitoring the contamination of human semen samples with leukocytes. Fertil Steril. 1992;57(6):1317–25.

    Article  CAS  PubMed  Google Scholar 

  60. Grunewald S, Paasch U, Glander HJ. Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001;2(3):127–33.

    Article  CAS  PubMed  Google Scholar 

  61. Bucar S, Goncalves A, Rocha E, Barros A, Sousa M, Sa R. DNA fragmentation in human sperm after magnetic-activated cell sorting. J Assist Reprod Genet. 2015;32(1):147–54.

    Article  PubMed  Google Scholar 

  62. Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, Chen HH, et al. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25(4):839–46.

    Article  CAS  PubMed  Google Scholar 

  63. Said T, Agarwal A, Grunewald S, Rasch M, Baumann T, Kriegel C, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74(3):530–7.

    Article  CAS  PubMed  Google Scholar 

  64. Aziz N, Said T, Paasch U, Agarwal A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod. 2007;22(5):1413–9.

    Article  PubMed  Google Scholar 

  65. Said TM, Grunewald S, Paasch U, Rasch M, Agarwal A, Glander HJ. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil Steril. 2005;83(5):1442–6.

    Article  PubMed  Google Scholar 

  66. Stimpfel M, Verdenik I, Zorn B, Virant-Klun I. Magnetic-activated cell sorting of non-apoptotic spermatozoa improves the quality of embryos according to female age: a prospective sibling oocyte study. J Assist Reprod Genet. 2018;35(9):1665–74.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Quinn MM, Jalalian L, Ribeiro S, Ona K, Demirci U, Cedars MI, et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod. 2018;33(8):1388–93.

    Article  CAS  PubMed  Google Scholar 

  68. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  69. Huszar G, Jakab A, Sakkas D, Ozenci CC, Cayli S, Delpiano E, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online. 2007;14(5):650–63.

    Article  PubMed  Google Scholar 

  70. Yagci A, Murk W, Stronk J, Huszar G. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study. J Androl. 2010;31(6):566–72.

    Article  CAS  PubMed  Google Scholar 

  71. Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17(5):617–27.

    Article  PubMed  Google Scholar 

  72. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d’Angelo D, et al. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online. 2008;16(6):835–41.

    Article  PubMed  Google Scholar 

  73. Klement AH, Koren-Morag N, Itsykson P, Berkovitz A. Intracytoplasmic morphologically selected sperm injection versus intracytoplasmic sperm injection: a step toward a clinical algorithm. Fertil Steril. 2013;99(5):1290–3.

    Article  PubMed  Google Scholar 

  74. Setti AS, Braga DP, Figueira RC, Iaconelli A Jr, Borges E. Intracytoplasmic morphologically selected sperm injection results in improved clinical outcomes in couples with previous ICSI failures or male factor infertility: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;183:96–103.

    Article  PubMed  Google Scholar 

  75. Marin-Briggiler CI, Tezon JG, Miranda PV, Vazquez-Levin MH. Effect of incubating human sperm at room temperature on capacitation-related events. Fertil Steril. 2002;77(2):252–9.

    Article  PubMed  Google Scholar 

  76. Matsuura R, Takeuchi T, Yoshida A. Preparation and incubation conditions affect the DNA integrity of ejaculated human spermatozoa. Asian J Androl. 2010;12(5):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Calamera JC, Fernandez PJ, Buffone MG, Acosta AA, Doncel GF. Effects of long-term in vitro incubation of human spermatozoa: functional parameters and catalase effect. Andrologia. 2001;33(2):79–86.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang XD, Chen MY, Gao Y, Han W, Liu DY, Huang GN. The effects of different sperm preparation methods and incubation time on the sperm DNA fragmentation. Hum Fertil (Camb). 2011;14(3):187–91.

    Article  CAS  Google Scholar 

  79. Yavas Y, Selub MR. Intrauterine insemination (IUI) pregnancy outcome is enhanced by shorter intervals from semen collection to sperm wash, from sperm wash to IUI time, and from semen collection to IUI time. Fertil Steril. 2004;82(6):1638–47.

    Article  PubMed  Google Scholar 

  80. Kuru Pekcan M, Kokanali D, Kokanali K, Tasci Y. Effect of time intervals from the end of sperm collection to intrauterine insemination on the pregnancy rates in controlled ovarian hyperstimulation-intrauterine insemination cycles. J Gynecol Obstet Hum Reprod. 2018;47(10):561–4.

    Article  PubMed  Google Scholar 

  81. Nabi A, Khalili MA, Halvaei I, Roodbari F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia. 2014;46(4):374–9.

    Article  CAS  PubMed  Google Scholar 

  82. Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol. 2014;12:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ferreira G, Costa C, Bassaizteguy V, Santos M, Cardozo R, Montes J, et al. Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress. PLoS One. 2018;13(6):e0197897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Curry MR. Cryopreservation of mammalian semen. Methods Mol Biol. 2007;368:303–11.

    Article  CAS  PubMed  Google Scholar 

  85. Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev. 1995;42(3):334–46.

    Article  CAS  PubMed  Google Scholar 

  86. Hammitt DG, Ferrigni RG, Sattler CA, Rebert JA, Singh AP. Development of a new and efficient laboratory method for processing testicular sperm. J Assist Reprod Genet. 2002;19(7):335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cohen J, Garrisi GJ, Congedo-Ferrara TA, Kieck KA, Schimmel TW, Scott RT. Cryopreservation of single human spermatozoa. Hum Reprod. 1997;12(5):994–1001.

    Article  CAS  PubMed  Google Scholar 

  88. Desai NN, Blackmon H, Goldfarb J. Single sperm cryopreservation on cryoloops: an alternative to hamster zona for freezing individual spermatozoa. Reprod Biomed Online. 2004;9(1):47–53.

    Article  PubMed  Google Scholar 

  89. Endo Y, Fujii Y, Shintani K, Seo M, Motoyama H, Funahashi H. Simple vitrification for small numbers of human spermatozoa. Reprod Biomed Online. 2012;24(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  90. Ostad M, Liotta D, Ye Z, Schlegel PN. Testicular sperm extraction for nonobstructive azoospermia: results of a multibiopsy approach with optimized tissue dispersion. Urology. 1998;52(4):692–6.

    Article  CAS  PubMed  Google Scholar 

  91. Ozkavukcu S, Ibis E, Kizil S, Isbacar S, Aydos K. A laboratory modification to testicular sperm preparation technique improves spermatogenic cell yield. Asian J Androl. 2014;16(6):852–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28(6):684–703.

    Article  CAS  PubMed  Google Scholar 

  93. Esteves SC, Roque M, Bradley CK, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017;108(3):456–67 e1.

    Article  CAS  PubMed  Google Scholar 

  94. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78(6):1225–33.

    Article  PubMed  Google Scholar 

  95. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91(24):11298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11(5):715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagamatsu G, Hayashi K. Stem cells, in vitro gametogenesis and male fertility. Reproduction. 2017;154(6):F79–91.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • MacLeod J. Human male infertility. Obstet Gynecol Surv. 1971;26:325–51.

    Article  Google Scholar 

  • Tielemans E, Burdorf A, teVelde E, et al. Sources of bias in studies among infertility clients. Am J Epidemiol. 2002;156:86–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Bernie Amaro for his excellent editorial services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Rhoton-Vlasak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhoton-Vlasak, A., Kramer, J.M., Plasencia, E. (2020). Assisted Reproductive Technology and Its Impact on Male Infertility Management. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics