Advertisement

Generalized Non-rigid Point Set Registration with Hybrid Mixture Models Considering Anisotropic Positional Uncertainties

  • Zhe MinEmail author
  • Li Liu
  • Max Q.-H. Meng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11768)

Abstract

Image-to-patient or pre-operative to intra-operative registration is an essential problem in computer-assisted surgery (CAS). Non-rigid or deformable registration is still a challenging problem with partial overlapping between point sets due to limited camera view, missing data due to tumor resection and the surface reconstruction error intra-operatively. In this paper, we propose and validate a normal-vector assisted non-rigid registration framework for accurately registering soft tissues in CAS. Two stages including rigid and non-rigid registrations are involved in the framework. In the stage of the rigid registration that does the initial alignment, the normal vectors extracted from the point sets are used while the position uncertainty is assumed to be anisotropic. With the normal vectors incorporated, the algorithm can better recover the point correspondences and is more robust to intra-operative partial data which is often the case in a typical laparoscopic surgery. In the stage of the non-rigid registration, the anisotropic coherent point drift (CPD) method is formulated, where the isotropic error assumption is generalized to anisotropic cases. Extensive experiments on the human liver data demonstrate our proposed algorithm’s several great advantages over the existing state-of-the-art ones. First, the rigid transformation matrix is recovered more accurately. Second, the proposed registration framework is much more robust to partial scan. Besides, the anisotropic CPD outperforms the original CPD significantly in terms of robustness to noise.

Notes

Acknowledgement

This project is partially supported by the Hong Kong RGC GRF grants 14210117, RGC NSFC RGC Joint Research Scheme N_CUHK448/17 and the shenzhen Science and Technology Innovation projects JCYJ20170413161616163 awarded to Max Q.-H. Meng.

Supplementary material

490279_1_En_61_MOESM1_ESM.pdf (5.2 mb)
Supplementary material 1 (pdf 5297 KB)

References

  1. 1.
    Bayer, S., et al.: Intraoperative brain shift compensation using a hybrid mixture model. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 116–124. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_14CrossRefGoogle Scholar
  2. 2.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLAB: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, pp. 129–136 (2008)Google Scholar
  3. 3.
    Collins, J.A., et al.: Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE TMI 36(7), 1502–1510 (2017)Google Scholar
  4. 4.
    Luo, J., et al.: Using the variogram for vector outlier screening: application to feature-based image registration. IJCARS 13(12), 1871–1880 (2018) Google Scholar
  5. 5.
    Min, Z., Ren, H., Meng, M.Q.H.: Statistical model of total target registration error in image-guided surgery. IEEE TASE (2019).  https://doi.org/10.1109/TASE.2019.2909646
  6. 6.
    Min, Z., Wang, J., Meng, M.Q.-H.: Joint registration of multiple generalized point sets. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 169–177. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04747-4_16CrossRefGoogle Scholar
  7. 7.
    Min, Z., Wang, J., Meng, M.Q.H.: Robust generalized point cloud registration using hybrid mixture model. In: ICRA 2018, pp. 4812–4818. IEEE (2018)Google Scholar
  8. 8.
    Min, Z., Wang, J., Meng, M.Q.H.: Joint rigid registration of multiple generalized point sets with hybrid mixture models. IEEE TASE (2019).  https://doi.org/10.1109/TASE.2019.2906391
  9. 9.
    Min, Z., Wang, J., Meng, M.Q.H.: Robust generalized point cloud registration with orientational data based on expectation maximization. IEEE TASE (2019).  https://doi.org/10.1109/TASE.2019.2914306
  10. 10.
    Min, Z., Wang, J., Song, S., Meng, M.Q.H.: Robust generalized point cloud registration with expectation maximization considering anisotropic positional uncertainties. In: IROS 2018, pp. 1290–1297. IEEE (2018)Google Scholar
  11. 11.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  12. 12.
    Ravikumar, N., Gooya, A., Beltrachini, L., Frangi, A.F., Taylor, Z.A.: Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data. Med. Image Anal. 53, 47–63 (2019)CrossRefGoogle Scholar
  13. 13.
    Ravikumar, N., Gooya, A., Frangi, A.F., Taylor, Z.A.: Generalised coherent point drift for group-wise registration of multi-dimensional point sets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 309–316. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66182-7_36CrossRefGoogle Scholar
  14. 14.
    Robu, M.R., et al.: Global rigid registration of ct to video in laparoscopic liver surgery. Int. J. Comput. Assist. Radiol. Surg. 13(6), 947–956 (2018)CrossRefGoogle Scholar
  15. 15.
    Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G.D., Taylor, R.H.: Endoscopic navigation in the absence of CT imaging. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 64–71. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_8CrossRefGoogle Scholar
  16. 16.
    Suwelack, S., et al.: Physics-based shape matching for intraoperative image guidance. Med. Phys. 41(11), 111901 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Robotics, Perception, and Artificial Intelligence LabThe Chinese University of Hong KongShatinHong Kong, China
  2. 2.Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina

Personalised recommendations