Skip to main content

Early Prediction of Alzheimer’s Disease Progression Using Variational Autoencoders

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Prediction of Alzheimer’s disease before the onset of symptoms is an important clinical challenge, as it offers the potential for earlier intervention to interrupt disease progression before the development of dementia symptoms, as well as spur new prevention and treatment avenues. In this work, we propose a model that learns how to predict Alzheimer’s disease ahead of time from structural Magnetic Resonance Imaging (sMRI) data. The contributions of this work are two-fold: (i) We use the latent variables learned by our model to visualize areas of the brain, which contribute to confident decisions. Our model appears to be focusing on specific areas of the neocortex, cerebellum, and brainstem, which are known to be clinically relevant. (ii) There are various ways in which disease might evolve from a patient’s current physiological state. We can leverage the latent variables in our model to capture the uncertainty over possible future patient outcomes. It can help identify and closely monitor people who are at a higher risk of disease, despite the current lack of clinical indications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each MRI is associated with the label of the next MRI of the same patient.

  2. 2.

    All the MRIs corresponding to a patient in the training set lie in the training set only.

References

  1. Adaszewski, S., et al.: How early can we predict Alzheimer’s disease using computational anatomy? Neurobiol. Aging 34(12), 2815–2826 (2013)

    Article  Google Scholar 

  2. Alexiou, A., et al.: A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Front. Aging Neurosci. 9, 77 (2017)

    Article  Google Scholar 

  3. Braak, H., Braak, E.: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16(3), 271–278 (1995)

    Article  MathSciNet  Google Scholar 

  4. Collins, D.L., et al.: Automatic 3D intersubject registration of mr volumetric data in standardized talairach space. J. Comput. Assist. Tomogr. 18(2), 192–205 (1994)

    Article  Google Scholar 

  5. Coupé, P., et al.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)

    Article  Google Scholar 

  6. Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: ICML, vol. 80, pp. 1174–1183 (2018)

    Google Scholar 

  7. Dickerson, B.C., et al.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic Amyloid-Positive individuals. Cereb. Cortex 19(3), 497–510 (2009)

    Article  Google Scholar 

  8. Folstein, M.F., et al.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatric Res. 12(3), 189–98 (1975)

    Article  Google Scholar 

  9. Fonov, V., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)

    Article  Google Scholar 

  10. Friedman, J., et al.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2007)

    Article  Google Scholar 

  11. Gupta, A., et al.: Natural image bases to represent neuroimaging data. In: ICML, pp. III-987–III-994 (2013)

    Google Scholar 

  12. Hosseini-Asl, E., et al.: Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. Front. Biosci. (Landmark Ed) 23, 584–596 (2018)

    Article  Google Scholar 

  13. Jack Jr., C.R., et al.: NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers. Dement. 14(4), 535–562 (2018)

    Article  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2013)

    Google Scholar 

  15. Kohl, S.A.A., et al.: A probabilistic u-net for segmentation of ambiguous images. In: NeurIPS, June 2018

    Google Scholar 

  16. Lee, G., et al.: Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9, 1952 (2019)

    Article  Google Scholar 

  17. Liu, S., et al.: Early diagnosis of Alzheimer’s disease with deep learning. In: ISBI, pp. 1015–1018 (2014)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. Mueller, S.G., et al.: Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. North Am. 15(4), 869–877 (2005)

    Article  Google Scholar 

  20. Ortiz, A., et al.: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis. Front. Comput. Neurosci. 9, 132 (2015)

    Article  Google Scholar 

  21. Payan, A., Montana, G.: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. In: ICPRAM, vol. 2 (2015)

    Google Scholar 

  22. Perl, D.P.: Neuropathology of Alzheimer’s disease. Mt Sinai J. Med. 77(1), 32–42 (2010)

    Article  Google Scholar 

  23. Simic, G., et al.: Does Alzheimer’s disease begin in the brainstem? Neuropathol. Appl. Neurobiol. 35(6), 532–554 (2009)

    Article  Google Scholar 

  24. Sled, J.G., et al.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  25. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  26. Wegiel, J., et al.: Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res. 818(1), 41–50 (1999)

    Article  Google Scholar 

  27. Wolz, R., et al.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE 6(10), e25446 (2011)

    Article  Google Scholar 

  28. Zhou, B., et al.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929, June 2016

    Google Scholar 

Download references

Acknowledgement

This work was generously funded by Healthy Brains for Healthy Lives (HBHL) through CFREF grant. We would also like to thank Koustuv Sinha for useful discussions, comments and reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumana Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basu, S., Wagstyl, K., Zandifar, A., Collins, L., Romero, A., Precup, D. (2019). Early Prediction of Alzheimer’s Disease Progression Using Variational Autoencoders. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics