Advertisement

Online Atlasing Using an Iterative Centroid

  • Antoine LegouhyEmail author
  • Olivier Commowick
  • François Rousseau
  • Christian Barillot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11766)

Abstract

Online atlasing, i.e. incrementing an atlas with new images as they are acquired, is key when performing studies on databases very large or still being gathered. We propose to this end a new diffeomorphic online atlasing method without having to perform again the atlasing process from scratch. New subjects are integrated following an iterative procedure gradually shifting the centroid of the images to its final position, making it computationally cheap to update regularly an atlas as new images are acquired (only needing a number of registrations equal to the number of new subjects). We evaluate this iterative centroid approach through the analysis of the sharpness and variance of the resulting atlases, and the transformations of images, comparing their deviations from a conventional method. We demonstrate that the transformations divergence between the two approaches is small and stable and that both atlases reach equivalent levels of image quality.

References

  1. 1.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006).  https://doi.org/10.1007/11866565_113CrossRefGoogle Scholar
  2. 2.
    Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D diffeomorphic atlas estimation: application to brain images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75757-3_81CrossRefGoogle Scholar
  3. 3.
    Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104(3), e158–e177 (2011)CrossRefGoogle Scholar
  4. 4.
    Commowick, O., Wiest-Daesslé, N., Prima, S.: Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 163–170. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33418-4_21CrossRefGoogle Scholar
  5. 5.
    Commowick, O., Wiest-Daesslé, N., Prima, S.: Block-matching strategies for rigid registration of multimodal medical images. In: ISBI, pp. 700–703 (2012)Google Scholar
  6. 6.
    Cury, C., Glaunès, J.A., Colliot, O.: Diffeomorphic iterative centroid methods for template estimation on large datasets. Geom. Theory Inf. Chapter 10, 273–299 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Essen, D.V., Ugurbil, K., et al.: The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRefGoogle Scholar
  8. 8.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: a convergence study. Comput. Vis. Image Underst. 77(2), 192–210 (2000)CrossRefGoogle Scholar
  9. 9.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)CrossRefGoogle Scholar
  10. 10.
    Legouhy, A., Commowick, O., Rousseau, F., Barillot, C.: Unbiased longitudinal brain atlas creation using robust linear registration and log-euclidean framework for diffeomorphisms. In: ISBI, pp. 1038–1041 (2019)Google Scholar
  11. 11.
    Miller, K.L., et al.: Multimodal population brain imaging in the UK biobank prospective epidemiological study. Nat. Neurosci. 19, 1523 (2016)CrossRefGoogle Scholar
  12. 12.
    Rohlfing, T., Zahr, N.M., et al.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31, 798–819 (2010)CrossRefGoogle Scholar
  13. 13.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85988-8_90CrossRefGoogle Scholar
  14. 14.
    Whitcher, B., Wisco, J.J., et al.: Statistical group comparison of diffusion tensors via multivariate hypothesis testing. MRM 57(6), 1065–1074 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antoine Legouhy
    • 1
    Email author
  • Olivier Commowick
    • 1
  • François Rousseau
    • 2
  • Christian Barillot
    • 1
  1. 1.Univ Rennes, Inria, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U-1228RennesFrance
  2. 2.IMT Atlantique, LaTIM U1101 INSERM, UBLBrestFrance

Personalised recommendations