Advertisement

Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation

  • Cheng OuyangEmail author
  • Konstantinos Kamnitsas
  • Carlo Biffi
  • Jinming Duan
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11765)

Abstract

Deep learning models trained on medical images from a source domain (\( e.g. \) imaging modality) often fail when deployed on images from a different target domain, despite imaging common anatomical structures. Deep unsupervised domain adaptation (UDA) aims to improve the performance of a deep neural network model on a target domain, using solely unlabelled target domain data and labelled source domain data. However, current state-of-the-art methods exhibit reduced performance when target data is scarce. In this work, we introduce a new data efficient UDA method for multi-domain medical image segmentation. The proposed method combines a novel VAE-based feature prior matching, which is data-efficient, and domain adversarial training to learn a shared domain-invariant latent space which is exploited during segmentation. Our method is evaluated on a public multi-modality cardiac image segmentation dataset by adapting from the labelled source domain (3D MRI) to the unlabelled target domain (3D CT). We show that by using only one single unlabelled 3D CT scan, the proposed architecture outperforms the state-of-the-art in the same setting. Finally, we perform ablation studies on prior matching and domain adversarial training to shed light on the theoretical grounding of the proposed method.

Notes

Acknowledgement

This work is supported by the EPSRC Programme Grant (EP/P001009/1).

References

  1. 1.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: Advances in NeurIPS, pp. 2108–2118 (2018)Google Scholar
  3. 3.
    Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ translation and segmentation: a cycle-and shape-consistent generative adversarial network. Med. Image Anal. 52, 174–184 (2019)CrossRefGoogle Scholar
  4. 4.
    Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. arXiv preprint arXiv:1901.08211 (2019)
  5. 5.
    Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00934-2_61CrossRefGoogle Scholar
  6. 6.
    Dou, Q., Ouyang, C., Chen, C., Chen, H., Glocker, B., Zhuang, X., Heng, P.A.: PnP-AdaNet: plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation. arXiv preprint arXiv:1812.07907 (2018)
  7. 7.
    Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)Google Scholar
  8. 8.
    Homan, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A.A., Dar-rell, T.: CyCADA: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)
  9. 9.
    Hosseini-Asl, E., Zhou, Y., Xiong, C., Socher, R.: Augmented cyclic adversarial learning for low resource domain adaptation (2018)Google Scholar
  10. 10.
    Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A., Menon, D., Nori, A., Criminisi, A., Rueckert, D., Glocker, B.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59050-9_47CrossRefGoogle Scholar
  11. 11.
    Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in NIPS, pp. 700–708 (2017)Google Scholar
  12. 12.
    Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE CVPR, pp. 7167–7176 (2017)Google Scholar
  13. 13.
    Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)
  14. 14.
    Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)Google Scholar
  15. 15.
    Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00934-2_67CrossRefGoogle Scholar
  16. 16.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE ICCV, pp. 2223–2232 (2017)Google Scholar
  17. 17.
    Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cheng Ouyang
    • 1
    Email author
  • Konstantinos Kamnitsas
    • 1
  • Carlo Biffi
    • 1
  • Jinming Duan
    • 1
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis GroupImperial College LondonLondonUK
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations