k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations

  • Chen QinEmail author
  • Jo Schlemper
  • Jinming Duan
  • Gavin Seegoolam
  • Anthony Price
  • Joseph Hajnal
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11765)


Dynamic magnetic resonance imaging (MRI) exhibits high correlations in k-space and time. In order to accelerate the dynamic MR imaging and to exploit k-t correlations from highly undersampled data, here we propose a novel deep learning based approach for dynamic MR image reconstruction, termed k-t NEXT (k-t NEtwork with X-f Transform). In particular, inspired by traditional methods such as k-t BLAST and k-t FOCUSS, we propose to reconstruct the true signals from aliased signals in x-f domain to exploit the spatio-temporal redundancies. Building on that, the proposed method then learns to recover the signals by alternating the reconstruction process between the x-f space and image space in an iterative fashion. This enables the network to effectively capture useful information and jointly exploit spatio-temporal correlations from both complementary domains. Experiments conducted on highly undersampled short-axis cardiac cine MRI scans demonstrate that our proposed method outperforms the current state-of-the-art dynamic MR reconstruction approaches both quantitatively and qualitatively.



This work was supported by EPSRC programme grant SmartHeart (EP/P001009/1).

Supplementary material (1.6 mb)
Supplementary material 1 (zip 1612 KB)


  1. 1.
    Akçakaya, M., Moeller, S., Weingärtner, S., et al.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019)CrossRefGoogle Scholar
  2. 2.
    Eo, T., Jun, Y., Kim, T., et al.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)CrossRefGoogle Scholar
  3. 3.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRefGoogle Scholar
  4. 4.
    Hammernik, K., Klatzer, T., Kobler, E., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)CrossRefGoogle Scholar
  5. 5.
    Han, Y., Ye, J.C.: k-space deep learning for accelerated MRI. arXiv preprint arXiv:1805.03779 (2018)
  6. 6.
    Hu, X., Parrish, T.: Reduction of field of view for dynamic imaging. Magn. Reson. Med. 31(6), 691–694 (1994)CrossRefGoogle Scholar
  7. 7.
    Jones, R., Haraldseth, O., Müller, T., et al.: K-space substitution: a novel dynamic imaging technique. Magn. Reson. Med. 29(6), 830–834 (1993)CrossRefGoogle Scholar
  8. 8.
    Jung, H., Sung, K., Nayak, K.S., et al.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)CrossRefGoogle Scholar
  9. 9.
    Jung, H., Ye, J.C., Kim, E.Y.: Improved k-t BLAST and k-t SENSE using FOCUSS. Phys. Med. Biol. 52(11), 3201 (2007)CrossRefGoogle Scholar
  10. 10.
    Lingala, S.G., Hu, Y., DiBella, E., et al.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)CrossRefGoogle Scholar
  11. 11.
    Liu, J., Kuang, T., Zhang, X.: Image reconstruction by splitting deep learning regularization from iterative inversion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 224–231. Springer, Cham (2018). Scholar
  12. 12.
    Qin, C., Schlemper, J., Caballero, J., et al.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019)CrossRefGoogle Scholar
  13. 13.
    Schlemper, J., Caballero, J., Hajnal, J.V., et al.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)CrossRefGoogle Scholar
  14. 14.
    Schlemper, J., et al.: Bayesian deep learning for accelerated MR image reconstruction. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 64–71. Springer, Cham (2018). Scholar
  15. 15.
    Tsao, J., Boesiger, P., Pruessmann, K.P.: k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn. Reson. Med. 50(5), 1031–1042 (2003)CrossRefGoogle Scholar
  16. 16.
    Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991–1048 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, P., Wang, F., Xu, W., et al.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space. In: MICCAI, pp. 180–188 (2018)Google Scholar
  18. 18.
    Zhang, S., Block, K.T., Frahm, J.: Magnetic resonance imaging in real time: advances using radial FLASH. Magn. Reson. Med. 31(1), 101–109 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chen Qin
    • 1
    Email author
  • Jo Schlemper
    • 1
  • Jinming Duan
    • 1
    • 3
  • Gavin Seegoolam
    • 1
  • Anthony Price
    • 2
  • Joseph Hajnal
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Division of Imaging Sciences and Biomedical Engineering DepartmentKing’s College London, St. Thomas’ HospitalLondonUK
  3. 3.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations