Advertisement

Fine-Scale Vessel Extraction in Fundus Images by Registration with Fluorescein Angiography

  • Kyoung Jin Noh
  • Sang Jun ParkEmail author
  • Soochahn LeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11764)

Abstract

We present a new framework for fine-scale vessel segmentation from fundus images through registration and segmentation of corresponding fluorescein angiography (FA) images. In FA, fluorescent dye is used to highlight the vessels and increase their contrast. Since these highlights are temporally dispersed among multiple FA frames, we first register the FA frames and aggregate the per-frame segmentations to construct a detailed vessel mask. The constructed FA vessel mask is then registered to the fundus image based on an initial fundus vessel mask. Postprocessing is performed to refine the final vessel mask. Registration of FA frames, as well as registration of FA vessel mask to the fundus image, are done by similar hierarchical coarse-to-fine frameworks, both comprising rigid and non-rigid registration. Two CNNs with identical network structures, both trained on public datasets but with different settings, are used for vessel segmentation. The resulting final vessel segmentation contains fine-scale, filamentary vessels extracted from FA and corresponding to the fundus image. We provide quantitative evaluation as well as qualitative examples which support the robustness and the accuracy of the proposed method.

Keywords

Fundus images Fine-scale vessel segmentation Fluorescein angiography Registration Filamentary vessels 

References

  1. 1.
    Almotiri, J., Elleithy, K., Elleithy, A.: Retinal vessels segmentation techniques and algorithms: a survey. Appl. Sci. 8(2), 155 (2018).  https://doi.org/10.3390/app8020155CrossRefGoogle Scholar
  2. 2.
    Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)Google Scholar
  3. 3.
    Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 154860 (2013)CrossRefGoogle Scholar
  4. 4.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056195CrossRefGoogle Scholar
  6. 6.
    Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012).  https://doi.org/10.1109/TBME.2012.2205687CrossRefGoogle Scholar
  7. 7.
    Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A.M., Campilho, A.: A no-reference quality metric for retinal vessel tree segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 82–90. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_10CrossRefGoogle Scholar
  8. 8.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  9. 9.
    Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000).  https://doi.org/10.1109/42.845178CrossRefGoogle Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004).  https://doi.org/10.1023/B:VISI.0000029664.99615.94CrossRefGoogle Scholar
  11. 11.
    Noh, K.J., Park, S.J., Lee, S.: Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput. Methods Programs Biomed. 178, 237–246 (2019).  https://doi.org/10.1016/j.cmpb.2019.06.030CrossRefGoogle Scholar
  12. 12.
    Perez-Rovira, A., Trucco, E., Wilson, P., Liu, J.: Deformable registration of retinal fluorescein angiogram sequences using vasculature structures. In: International Conference of the IEEE Engineering in Medicine and Biology (EMBS), pp. 4383–4386, August 2010.  https://doi.org/10.1109/IEMBS.2010.5627094
  13. 13.
    Son, J., Park, S.J., Jung, K.H.: Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J. Digit. Imaging 32, 499–512 (2018).  https://doi.org/10.1007/s10278-018-0126-3CrossRefGoogle Scholar
  14. 14.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004).  https://doi.org/10.1109/TMI.2004.825627CrossRefGoogle Scholar
  15. 15.
    Viswanath, K., McGavin, D.D.M.: Diabetic retinopathy: clinical findings and management. Community Eye Health 16(46), 21–24 (2003). https://www.ncbi.nlm.nih.gov/pubmed/17491851Google Scholar
  16. 16.
    Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2018).  https://doi.org/10.1007/s10278-017-0037-8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologySeoul National University College of Medicine, Seoul National University Bundang HospitalSeongnamKorea
  2. 2.School of Electrical EngineeringKookmin UniversitySeoulKorea

Personalised recommendations