Advertisement

PseudoEdgeNet: Nuclei Segmentation only with Point Annotations

  • Inwan Yoo
  • Donggeun Yoo
  • Kyunghyun PaengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11764)

Abstract

Nuclei segmentation is one of the important tasks for whole slide image analysis in digital pathology. With the drastic advance of deep learning, recent deep networks have demonstrated successful performance of the nuclei segmentation task. However, a major bottleneck to achieving good performance is the cost for annotation. A large network requires a large number of segmentation masks, and this annotation task is given to pathologists, not the public. In this paper, we propose a weakly supervised nuclei segmentation method, which requires only point annotations for training. This method can scale to large training set as marking a point of a nucleus is much cheaper than the fine segmentation mask. To this end, we introduce a novel auxiliary network, called PseudoEdgeNet, which guides the segmentation network to recognize nuclei edges even without edge annotations. We evaluate our method with two public datasets, and the results demonstrate that the method consistently outperforms other weakly supervised methods.

Keywords

Nuclei segmentation Weakly supervised learning Point annotation 

References

  1. 1.
    Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Cell segmentation proposal network for microscopy image analysis. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 21–29. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46976-8_3CrossRefGoogle Scholar
  2. 2.
    Al-Janabi, S., Huisman, A., Van Diest, P.J.: Digital pathology: current status and future perspectives. Histopathology 61(1), 1–9 (2012)CrossRefGoogle Scholar
  3. 3.
    Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011)CrossRefGoogle Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)Google Scholar
  5. 5.
    Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_33CrossRefGoogle Scholar
  6. 6.
    Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)Google Scholar
  7. 7.
    Kirillov, A., He, K., Girshick, R., Dollár, P.: A unified architecture for instance and semantic segmentationGoogle Scholar
  8. 8.
    Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)CrossRefGoogle Scholar
  9. 9.
    Laradji, I.H., Rostamzadeh, N., Pinheiro, P.O., Vazquez, D., Schmidt, M.: Where are the blobs: counting by localization with point supervision. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 547–562 (2018)Google Scholar
  10. 10.
    Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)Google Scholar
  11. 11.
    Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6 (2016). Article number: 26286Google Scholar
  12. 12.
    Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)
  13. 13.
    Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: The European Conference on Computer Vision (ECCV), September 2018Google Scholar
  14. 14.
    Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)CrossRefGoogle Scholar
  15. 15.
    Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 507–522 (2018)Google Scholar
  16. 16.
    Weidi, X., Noble, J.A., Zisserman, A.: Microscopy cell counting with fully convolutional regression networks. In: 1st Deep Learning Workshop, Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2015)Google Scholar
  17. 17.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_53CrossRefGoogle Scholar
  18. 18.
    Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  19. 19.
    Zhou, Y., Chang, H., Barner, K.E., Parvin, B.: Nuclei segmentation via sparsity constrained convolutional regression. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1284–1287. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lunit Inc.SeoulSouth Korea

Personalised recommendations