Advertisement

Automatic Translating Between Ancient Chinese and Contemporary Chinese with Limited Aligned Corpora

  • Zhiyuan Zhang
  • Wei Li
  • Qi SuEmail author
Conference paper
  • 1.1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11839)

Abstract

The Chinese language has evolved a lot during the long-term development. Therefore, native speakers now have trouble in reading sentences written in ancient Chinese. In this paper, we propose to build an end-to-end neural model to automatically translate between ancient and contemporary Chinese. However, the existing ancient-contemporary Chinese parallel corpora are not aligned at the sentence level and sentence-aligned corpora are limited, which makes it difficult to train the model. To build the sentence level parallel training data for the model, we propose an unsupervised algorithm that constructs sentence-aligned ancient-contemporary pairs by using the fact that the aligned sentence pair shares many of the tokens. Based on the aligned corpus, we propose an end-to-end neural model with copying mechanism and local attention to translate between ancient and contemporary Chinese. Experiments show that the proposed unsupervised algorithm achieves 99.4% F1 score for sentence alignment, and the translation model achieves 26.95 BLEU from ancient to contemporary, and 36.34 BLEU from contemporary to ancient.

Keywords

Sentence alignment Neural machine translation 

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 7–9 May 2015, Conference Track Proceedings (2015)Google Scholar
  2. 2.
    Calixto, I., Liu, Q., Campbell, N.: Doubly-attentive decoder for multi-modal neural machine translation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, 30 July–4 August, Volume 1: Long Papers, pp. 1913–1924 (2017)Google Scholar
  3. 3.
    Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014, pp. 1724–1734 (2014)Google Scholar
  4. 4.
    Feng, S., Liu, S., Yang, N., Li, M., Zhou, M., Zhu, K.Q.: Improving attention modeling with implicit distortion and fertility for machine translation. In: COLING 2016, pp. 3082–3092 (2016)Google Scholar
  5. 5.
    Gale, W.A., Church, K.W.: A program for aligning sentences in bilingual corpora. Comput. Linguist. 19, 75–102 (1993)Google Scholar
  6. 6.
    Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating copying mechanism in sequence-to-sequence learning. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, 7–12 August 2016, Berlin, Volume 1: Long Papers (2016)Google Scholar
  7. 7.
    Haruno, M., Yamazaki, T.: High-performance bilingual text alignment using statistical and dictionary information. Nat. Lang. Eng. 3(1), 1–14 (1997)CrossRefGoogle Scholar
  8. 8.
    Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very large target vocabulary for neural machine translation. In: ACL 2015, pp. 1–10 (2015)Google Scholar
  9. 9.
    Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: EMNLP 2013, pp. 1700–1709 (2013)Google Scholar
  10. 10.
    Lin, J., Sun, X., Ma, S., Su, Q.: Global encoding for abstractive summarization. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, 15–20 July 2018, Volume 2: Short Papers, pp. 163–169 (2018)Google Scholar
  11. 11.
    Lin, Z., Wang, X.: Chinese ancient-modern sentence alignment. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 1178–1185. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72586-2_164CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Wang, N.: Sentence alignment for ancient and modern Chinese parallel corpus. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds.) AICI 2012. CCIS, vol. 315, pp. 408–415. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34240-0_54CrossRefGoogle Scholar
  13. 13.
    Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, 17–21 September 2015, pp. 1412–1421 (2015) Google Scholar
  14. 14.
    Ma, S., Sun, X., Wang, Y., Lin, J.: Bag-of-words as target for neural machine translation. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, 15–20 July 2018, Volume 2: Short Papers, pp. 332–338 (2018)Google Scholar
  15. 15.
    Meng, F., Lu, Z., Li, H., Liu, Q.: Interactive attention for neural machine translation. In: COLING 2016, pp. 2174–2185 (2016)Google Scholar
  16. 16.
    Mi, H., Wang, Z., Ittycheriah, A.: Supervised attentions for neural machine translation. In: EMNLP 2016, pp. 2283–2288 (2016)Google Scholar
  17. 17.
    Resnik, P.: Parallel strands: a preliminary investigation into mining the web for bilingual text. In: Farwell, D., Gerber, L., Hovy, E. (eds.) AMTA 1998. LNCS (LNAI), vol. 1529, pp. 72–82. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49478-2_7CrossRefGoogle Scholar
  18. 18.
    Resnik, P.: Mining the web for bilingual text. In: Dale, R., Church, K.W. (eds.) ACL. ACL (1999)Google Scholar
  19. 19.
    See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: Barzilay, R., Kan, M. (eds.) Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, 30 July–4 August, Volume 1: Long Papers, pp. 1073–1083. Association for Computational Linguistics (2017).  https://doi.org/10.18653/v1/P17-1099
  20. 20.
    Su, J., Tan, Z., Xiong, D., Ji, R., Shi, X., Liu, Y.: Lattice-based recurrent neural network encoders for neural machine translation. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, pp. 3302–3308. AAAI Press (2017)Google Scholar
  21. 21.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)Google Scholar
  22. 22.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS 2014, pp. 3104–3112 (2014)Google Scholar
  23. 23.
    Tjandra, A., Sakti, S., Nakamura, S.: Local monotonic attention mechanism for end-to-end speech recognition. CoRR abs/1705.08091 (2017)Google Scholar
  24. 24.
    Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine translation. In: ACL 2016 (2016)Google Scholar
  25. 25.
    Wang, X., Ren, F.: Chinese-Japanese clause alignment. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 400–412. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30586-6_43CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MOE Key Lab of Computational Linguistics, School of EECSPeking UniversityBeijingChina
  2. 2.School of Foreign LanguagesPeking UniversityBeijingChina

Personalised recommendations