Advertisement

Adversarial Pulmonary Pathology Translation for Pairwise Chest X-Ray Data Augmentation

  • Yunyan XingEmail author
  • Zongyuan GeEmail author
  • Rui Zeng
  • Dwarikanath Mahapatra
  • Jarrel Seah
  • Meng Law
  • Tom Drummond
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11769)

Abstract

Recent works show that Generative Adversarial Networks (GANs) can be successfully applied to chest X-ray data augmentation for lung disease recognition. However, the implausible and distorted pathology features generated from the less than perfect generator may lead to wrong clinical decisions. Why not keep the original pathology region? We proposed a novel approach that allows our generative model to generate high quality plausible images that contain undistorted pathology areas. The main idea is to design a training scheme based on an image-to-image translation network to introduce variations of new lung features around the pathology ground-truth area. Moreover, our model is able to leverage both annotated disease images and unannotated healthy lung images for the purpose of generation. We demonstrate the effectiveness of our model on two tasks: (i) we invite certified radiologists to assess the quality of the generated synthetic images against real and other state-of-the-art generative models, and (ii) data augmentation to improve the performance of disease localisation.

Supplementary material

490281_1_En_84_MOESM1_ESM.pdf (705 kb)
Supplementary material 1 (pdf 704 KB)

References

  1. 1.
    Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)Google Scholar
  2. 2.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  3. 3.
    Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation. In: MIDL (2018)Google Scholar
  4. 4.
    Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)CrossRefGoogle Scholar
  5. 5.
    Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. In: ISBI (2018)Google Scholar
  6. 6.
    Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  7. 7.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)Google Scholar
  8. 8.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  10. 10.
    Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)Google Scholar
  11. 11.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
  12. 12.
    Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., Barfett, J.: Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks. In: ICASSP (2018)Google Scholar
  13. 13.
    Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: CVPR (2017)Google Scholar
  14. 14.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yunyan Xing
    • 1
    Email author
  • Zongyuan Ge
    • 1
    Email author
  • Rui Zeng
    • 1
  • Dwarikanath Mahapatra
    • 2
  • Jarrel Seah
    • 1
  • Meng Law
    • 1
  • Tom Drummond
    • 1
  1. 1.Monash UniversityMelbourneAustralia
  2. 2.IBM ResearchMelbourneAustralia

Personalised recommendations