Signed Laplacian Deep Learning with Adversarial Augmentation for Improved Mammography Diagnosis

  • Heyi LiEmail author
  • Dongdong Chen
  • William H. Nailon
  • Mike E. Davies
  • David I. Laurenson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11769)


Computer-aided breast cancer diagnosis in mammography is limited by inadequate data and the similarity between benign and cancerous masses. To address this, we propose a signed graph regularized deep neural network with adversarial augmentation, named DiagNet. Firstly, we use adversarial learning to generate positive and negative mass-contained mammograms for each mass class. After that, a signed similarity graph is built upon the expanded data to further highlight the discrimination. Finally, a deep convolutional neural network is trained by jointly optimizing the signed graph regularization and classification loss. Experiments show that the DiagNet framework outperforms the state-of-the-art in breast mass diagnosis in mammography.


Deep learning Mammography diagnosis Adversarial learning Graph regularization 


  1. 1.
    Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)
  2. 2.
    Chen, D., Lv, J., Davies, M.E.: Learning discriminative representation with signed Laplacian restricted Boltzmann machine. arXiv preprint arXiv:1808.09389 (2018)
  3. 3.
    Chen, D., Lv, J., Yi, Z.: Unsupervised multi-manifold clustering by learning deep representation. In: Workshops at the 31th AAAI Conference on Artificial Intelligence (AAAI), pp. 385–391 (2017)Google Scholar
  4. 4.
    Chen, D., Lv, J., Yi, Z.: Graph regularized restricted Boltzmann machine. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2651–2659 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)Google Scholar
  6. 6.
    DeSantis, C., Ma, J., Bryan, L., Jemal, A.: Breast cancer statistics, 2013. CA: Cancer J. Clin. 64(1), 52–62 (2014)Google Scholar
  7. 7.
    Dhungel, N., Carneiro, G., Bradley, A.P.: The automated learning of deep features for breast mass classification from mammograms. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 106–114. Springer, Cham (2016). Scholar
  8. 8.
    Domingues, I., Sales, E., Cardoso, J., Pereira, W.: INbreast-database masses characterization. In: XXIII CBEB (2012)Google Scholar
  9. 9.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  10. 10.
    Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale (2017)Google Scholar
  11. 11.
    Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.: A deep dual-path network for improved mammogram image processing. In: International Conference on Acoustics, Speech and Signal Processing (2019)Google Scholar
  12. 12.
    Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.: Improved breast mass segmentation in mammograms with conditional residual U-Net. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA-2018. LNCS, vol. 11040, pp. 81–89. Springer, Cham (2018). Scholar
  13. 13.
    Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)CrossRefGoogle Scholar
  14. 14.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)Google Scholar
  15. 15.
    Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(5500), 2268–2269 (2000)CrossRefGoogle Scholar
  16. 16.
    Shams, S., Platania, R., Zhang, J., Kim, J., Lee, K., Park, S.-J.: Deep generative breast cancer screening and diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 859–867. Springer, Cham (2018). Scholar
  17. 17.
    Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 98–106. Springer, Cham (2018). Scholar
  18. 18.
    Yu, Y., Qian, H., Hu, Y.Q.: Derivative-free optimization via classification. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)Google Scholar
  19. 19.
    Yu, Y., Qu, W.Y., Li, N., Guo, Z.: Open-category classification by adversarial sample generation. In: International Joint Conference on Artificial Intelligence (2017)Google Scholar
  20. 20.
    Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Heyi Li
    • 1
    Email author
  • Dongdong Chen
    • 1
  • William H. Nailon
    • 2
  • Mike E. Davies
    • 1
  • David I. Laurenson
    • 1
  1. 1.Institute for Digital CommunicationsUniversity of EdinburghEdinburghUK
  2. 2.Oncology Physics DepartmentEdinburgh Cancer Centre, Western General HospitalEdinburghUK

Personalised recommendations