NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation

  • Hao Tang
  • Chupeng Zhang
  • Xiaohui XieEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11769)


Pulmonary nodule detection, false positive reduction and segmentation represent three of the most common tasks in the computer aided analysis of chest CT images. Methods have been proposed for each task with deep learning based methods heavily favored recently. However training deep learning models to solve each task separately may be sub-optimal - resource intensive and without the benefit of feature sharing. Here, we propose a new end-to-end 3D deep convolutional neural net (DCNN), called NoduleNet, to solve nodule detection, false positive reduction and nodule segmentation jointly in a multi-task fashion. To avoid friction between different tasks and encourage feature diversification, we incorporate two major design tricks: (1) decoupled feature maps for nodule detection and false positive reduction, and (2) a segmentation refinement subnet for increasing the precision of nodule segmentation. Extensive experiments on the large-scale LIDC dataset demonstrate that the multi-task training is highly beneficial, improving the nodule detection accuracy by 10.27%, compared to the baseline model trained to only solve the nodule detection task. We also carry out systematic ablation studies to highlight contributions from each of the added components. Code is available at


Pulmonary nodule detection and segmentation Deep convolutional neural network 


  1. 1.
    Aresta, G., et al.: iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. arXiv preprint arXiv:1811.12789 (2018)
  2. 2.
    Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)CrossRefGoogle Scholar
  3. 3.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68(6), 394–424 (2018)Google Scholar
  4. 4.
    Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Revisiting RCNN: on awakening the classification power of faster RCNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 473–490. Springer, Cham (2018). Scholar
  5. 5.
    Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). Scholar
  6. 6.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)Google Scholar
  7. 7.
    Kalpathy-Cramer, J., et al.: A comparison of lung nodule segmentation algorithms: methods and results from a multi-institutional study. J. Digit. Imaging 29(4), 476–487 (2016)CrossRefGoogle Scholar
  8. 8.
    Khosravan, N., Bagci, U.: S4ND: single-shot single-scale lung nodule detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 794–802. Springer, Cham (2018). Scholar
  9. 9.
    Kundel, H., Berbaum, K., Dorfman, D., Gur, D., Metz, C., Swensson, R.: Receiver operating characteristic analysis in medical imaging. ICRU Rep. 79(8), 1 (2008)Google Scholar
  10. 10.
    Liao, F., Liang, M., Li, Z., Hu, X., Song, S.: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network. IEEE Trans. Neural Networks Learn. Syst. (2019)Google Scholar
  11. 11.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)Google Scholar
  12. 12.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  14. 14.
    Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)CrossRefGoogle Scholar
  15. 15.
    Tang, H., Kim, D.R., Xie, X.: Automated pulmonary nodule detection using 3D deep convolutional neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 523–526. IEEE (2018)Google Scholar
  16. 16.
    Tang, H., Liu, X., Xie, X.: An end-to-end framework for integrated pulmonary nodule detection and false positive reduction. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)Google Scholar
  17. 17.
    Wang, S., et al.: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med. Image Anal. 40, 172–183 (2017)CrossRefGoogle Scholar
  18. 18.
    Wu, B., Zhou, Z., Wang, J., Wang, Y.: Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1109–1113. IEEE (2018)Google Scholar
  19. 19.
    Zhu, W., Liu, C., Fan, W., Xie, X.: DeepLung: 3D deep convolutional nets for automated pulmonary nodule detection and classification. arXiv preprint arXiv:1709.05538 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniveresity of California IrvineIrvineUSA
  2. 2.Deep Voxel Inc.Costa MesaUSA

Personalised recommendations