Advertisement

Research on Energy Efficiency in Wireless Powered Communication Network with User Cooperative Relay

  • Gang FengEmail author
  • Xizhong Qin
  • Zhenhong Jia
  • Yongming Li
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 295)

Abstract

A user collaborative relay wireless powered communication network (UCR-WPCN) is studied in this paper, where users can harvest energy from the dedicated power device, named hybrid access point (HAP), and then transmit the information to HAP. Our goal is to study the total energy efficiency (EE) maximization of users in UCR-WPCN via joint time allocation and power control while meeting minimum rate requirements. However, because this problem is a non-convex, it is difficult for us to solve it. Then, we can use fractional programming principle theory and variable substitution to convert it into a standard convex optimization problem. Finally, we proposed an efficient optimization iterative algorithm in order to find the optimal solution. The simulation results show that the UCR plan can improve the user’s information transmission rate and significantly improve the user’s total energy efficiency in the system, compared with the non-cooperative relay transmission scheme.

Keywords

Wireless powered communication network Energy efficiency Harvesting energy Optimization iterative algorithm 

Notes

Acknowledgment

This study was supported by Natural science foundation of xinjiang uygur autonomous region (2018D01C047).

References

  1. 1.
    Buzzi, S., Chih-Lin, I., Klein, T.E., et al.: A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun. 34(4), 697–709 (2016)CrossRefGoogle Scholar
  2. 2.
    Bi, S., Ho, C.K., Zhang, R.: Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2014)CrossRefGoogle Scholar
  3. 3.
    Alsaba, Y., Rahim, S.K.A., Leow, C.Y.: Beamforming in wireless energy harvesting communications systems: a survey. IEEE Commun. Surv. Tutor. PP(99), 1 (2018)Google Scholar
  4. 4.
    Zungeru, A.M., Ang, L.M., Prabaharan, S.R.S., et al.: Radio frequency energy harvesting and management for wireless sensor networks. Eprint Arxiv (2012)Google Scholar
  5. 5.
    Krikidis, I., Timotheou, S., Nikolaou, S., et al.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)CrossRefGoogle Scholar
  6. 6.
    Lu, X., Wang, P., Niyato, D., et al.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2017)CrossRefGoogle Scholar
  7. 7.
    Xu, J., Liu, L., Zhang, R.: Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Sig. Process. 62(18), 4798–4810 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhao, L., Wang, X., Zheng, K.: Downlink hybrid information and energy transfer with massive MIMO. IEEE Trans. Wirel. Commun. 15(2), 1309–1322 (2016)CrossRefGoogle Scholar
  9. 9.
    Ghazanfari, A., Tabassum, H., Hossain, E.: Ambient RF energy harvesting in ultra-dense small cell networks: performance and trade-offs. IEEE Press (2016)Google Scholar
  10. 10.
    Zhang, R., Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014)CrossRefGoogle Scholar
  12. 12.
    Ng, D.W.K., Lo, E.S., Schober, R.: Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(8), 4599–4615 (2014)CrossRefGoogle Scholar
  13. 13.
    Chu, Z., Zhou, F., Zhu, Z., et al.: Energy beamforming design and user cooperation for wireless powered communication networks. IEEE Wirel. Commun. Lett. PP(99), 1 (2017)Google Scholar
  14. 14.
    Di, X., Xiong, K., Fan, P., et al.: Optimal resource allocation in wireless powered communication networks with user cooperation. IEEE Trans. Wirel. Commun. PP(99), 1 (2017)Google Scholar
  15. 15.
    Chen, H., Xiao, L., Yang, D., et al.: User cooperation in wireless powered communication networks with a pricing mechanism. IEEE Access PP(99), 1 (2017)Google Scholar
  16. 16.
    Kim, J., Lee, H., Song, C., et al.: Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Trans. Wirel. Commun. PP(99), 1 (2017)Google Scholar
  17. 17.
    Ju, H., Zhang, R.: Throughput maximization in wireless powered communication networks. IEEE Trans. Wirel. Commun. 13(1), 418–428 (2014)CrossRefGoogle Scholar
  18. 18.
    Wu, J., Rangan, S., Zhang, H.: Green Communications: Theoretical Fundamentals, Algorithms, and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  19. 19.
    Wu, Q., Tao, M., Ng, D.W.K., et al.: Energy-efficient resource allocation for wireless powered communication networks. IEEE Trans. Wirel. Commun. 15(3), 2312–2327 (2016)CrossRefGoogle Scholar
  20. 20.
    Liang, Y., Veeravalli, V.V.: Gaussian orthogonal relay channels: optimal resource allocation and capacity. IEEE Trans. Inf. Theory 51(9), 3284–3289 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Gang Feng
    • 1
    Email author
  • Xizhong Qin
    • 1
  • Zhenhong Jia
    • 1
  • Yongming Li
    • 1
  1. 1.College of Information Science and EngineeringXinjiang UniversityUrumqiChina

Personalised recommendations