Advertisement

Facility Location Under Uncertainty

  • Isabel CorreiaEmail author
  • Francisco Saldanha-da-Gama
Chapter
  • 59 Downloads

Abstract

This chapter covers some of the existing knowledge on facility location under uncertainty. The goal is to provide the reader with essential tools for modeling and tackling problems in the area. To a large extent, the focus is put on discrete facility location problems. Several issues related with uncertainty are discussed. A distinction is made between problems in the areas of robust optimization, stochastic programming and chance-constrained programming. The presentation is complemented with several other aspects of relevance such as multi-stage stochastic programming models, scenario generation, and solution techniques. Several well-known facility location problems are used throughout the chapter for illustrative purposes.

Keywords

Robust optimization Stochastic programming Chance constraints 

References

  1. Aghezzaf E (2005) Capacity planning and warehouse location in supply chains with uncertain demands. J Oper Res Soc 56:453–462zbMATHCrossRefGoogle Scholar
  2. Ahmed S, Garcia R (2004) Dynamic capacity acquisition and assignment under uncertainty. Ann Oper Res 124:267–283MathSciNetzbMATHCrossRefGoogle Scholar
  3. Albareda-Sambola M, Fernández E, Laporte G (2007) Heuristic and lower bound for a stochastic location-routing problem. Eur J Oper Res 179:940–955zbMATHCrossRefGoogle Scholar
  4. Albareda-Sambola M, Fernández E, Saldanha-da-Gama F (2011) The facility location problem with Bernoulli demands. Omega 39:335–345CrossRefGoogle Scholar
  5. Albareda-Sambola M, Alonso-Ayuso A, Escudero LF, Fernández E, Pizarro C (2013) Fix-and-relax coordination for a multi-period location-allocation problem under uncertainty. Comput Oper Res 40:2878–2892MathSciNetzbMATHCrossRefGoogle Scholar
  6. Albareda-Sambola M, Fernández E, Saldanha-da-Gama F (2017) Heuristic solutions to the facility location problem with general Bernoulli demands. INFORMS J Compu 29:737–753MathSciNetCrossRefGoogle Scholar
  7. Alonso-Ayuso A, Escudero LF, Garín A, Ortuño MT, Pérez G (2003) An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. J Global Optim 26:97–124MathSciNetzbMATHCrossRefGoogle Scholar
  8. Alumur SA, Nickel S, Saldanha-da-Gama F (2012) Hub location under uncertainty. Transp Res B-Meth 46:529–543CrossRefGoogle Scholar
  9. Álvarez-Miranda E, Fernández E, Ljubić I (2015) The recoverable robust facility location problem. Transp Res B-Meth 79:93–120CrossRefGoogle Scholar
  10. Armas J, Juan AA, Marquès JM, Pedroso JP (2017) Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic. J Oper Res Soc 68:1161–1176CrossRefGoogle Scholar
  11. Baron O, Milner J, Naseraldin H (2011) Facility location: a robust optimization approach. Prod Oper Manag 20:772–785CrossRefGoogle Scholar
  12. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonzbMATHCrossRefGoogle Scholar
  13. Berman O, Drezner Z (2008) The p-median problem under uncertainty. Eur J Oper Res 189:19–30MathSciNetzbMATHCrossRefGoogle Scholar
  14. Berman O, Wang J (2010) The network p-median problem with discrete probabilistic demand weights. Comput Oper Res 37:1455–1463MathSciNetzbMATHCrossRefGoogle Scholar
  15. Bieniek M (2015) A note on the facility location problem with stochastic demands. Omega 55:53–60CrossRefGoogle Scholar
  16. Birge JR, Louveaux FV (2011) Introduction to Stochastic Programming, 2nd edn. Springer, New YorkzbMATHCrossRefGoogle Scholar
  17. Blanquero R, Carrizosa E, Hendrix EMT (2011) Locating a competitive facility in the plane with a robustness criterion. Eur J Oper Res 215:21–24MathSciNetzbMATHCrossRefGoogle Scholar
  18. Carrizosa E, Nickel S (2003) Robust facility location. Math Meth Oper Res 58:331–349MathSciNetzbMATHCrossRefGoogle Scholar
  19. Carrøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Oper Res Lett 24:37–45MathSciNetCrossRefGoogle Scholar
  20. Casement CJ, Kahle DJ (2017) Graphical prior elicitation in univariate models. Commun Stat-Simul C 47:2906–2924MathSciNetCrossRefGoogle Scholar
  21. Chen G, Daskin MS, Shen Z-JM, Uryasev S (2006) The α-reliable mean-excess regret model for stochastic facility location modeling. Nav Res Log 53:617–626MathSciNetzbMATHCrossRefGoogle Scholar
  22. Conde E (2007) Minmax regret location-allocation problem on a network under uncertainty. Eur J Oper Res 179:1025–1039MathSciNetzbMATHCrossRefGoogle Scholar
  23. Correia I, Nickel S, Saldanha-da-Gama F. (2018) A stochastic multi-period capacitated multiple allocation hub location problem: formulation and inequalities. Omega 74:122–134CrossRefGoogle Scholar
  24. Current JR, Ratick S, ReVelle CS (1997) Dynamic facility location when the total number of facilities is uncertain: a decision analysis approach. Eur J Oper Res 110:597–609zbMATHCrossRefGoogle Scholar
  25. Daskin MS, Hesse SM, ReVelle CS (1997) α-reliable p-minimax regret: a new model for strategic facility location modeling. Locat Sci 5:227–246zbMATHCrossRefGoogle Scholar
  26. Daskin MS, Coullard CR, Shen Z-JM (2002) An inventory-location model: formulation, solution algorithm and computational results. Ann Oper Res 110:83–106MathSciNetzbMATHCrossRefGoogle Scholar
  27. Di Domenica N, Mitra G, Valente P, Birbilis G (2007) Stochastic programming and scenario generation within a simulation framework: an information systems perspective. Decis Support Syst 42:2197–2218CrossRefGoogle Scholar
  28. Drezner Z, Nickel S, Ziegler H-P (2012) Stochastic analysis of ordered median problems. J Oper Res Soc 63:1578–1588CrossRefGoogle Scholar
  29. Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Math Program A 95:493–511MathSciNetzbMATHCrossRefGoogle Scholar
  30. Escudero LF, Garín MA, Merino M, Pérez G (2009) BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems. Top 17:96–122MathSciNetzbMATHCrossRefGoogle Scholar
  31. Escudero LF, Garín MA, Merino M, Pérez G (2010) On BFC-MSMIP strategies for scenario cluster partitioning, and twin node family branching selection and bounding for multistage stochastic mixed integer programming. Comput Oper Res 37:738–753zbMATHCrossRefGoogle Scholar
  32. Escudero LF, Garín MA, Pérez G, Unzueta A (2012) Lagrangean decomposition for large-scale two-stage stochastic mixed 0−1 problems. Top 20:347–374MathSciNetzbMATHCrossRefGoogle Scholar
  33. Escudero LF, Garín MA, Unzueta A (2016) Cluster Lagrangean decomposition in multistage stochastic optimization. Comput Oper Res 67:48–62MathSciNetzbMATHCrossRefGoogle Scholar
  34. Escudero LF, Garín MA, Pizarro C, Unzueta A (2018) On efficient matheuristic algorithms for multi-period stochastic facility location-assignment problems. Comput Optim Appl 70:865–888MathSciNetzbMATHCrossRefGoogle Scholar
  35. Fernández E, Hinojosa Y, Puerto J, Saldanha-da-Gama F (2019) New algorithmic framework for conditional value at risk: application to stochastic fixed-charge transportation. Eur J Oper Res 277:215–226MathSciNetzbMATHCrossRefGoogle Scholar
  36. Fonseca MC, García-Sánchez A, Ortega-Mier M, Saldanha-da-Gama F (2010) A stochastic bi-objective location model for strategic reverse logistics. Top 18:158–184MathSciNetzbMATHCrossRefGoogle Scholar
  37. França PM, Luna HPL (1982) Solving stochastic transportation-location problems by generalized Benders decomposition. Transport Sci 16:113–126MathSciNetCrossRefGoogle Scholar
  38. Guan Y, Ahmed S, Nemhauser GL (2009) Cutting planes for multistage stochastic integer programs. Oper Res 57:287–298MathSciNetzbMATHCrossRefGoogle Scholar
  39. Hernández P, Alonso-Ayuso A, Bravo F, Escudero LF, Guignard M, Marianov V, Weintraub A (2012) A branch-and-cluster coordination scheme for selecting prison facility sites under uncertainty. Comput Oper Res 39:2232–2241MathSciNetzbMATHCrossRefGoogle Scholar
  40. Hinojosa Y, Puerto J, Saldanha-da-Gama F (2014) A two-stage stochastic transportation problem with fixed handling costs and a priori selection of the distribution channels. Top 22:1123–1147MathSciNetzbMATHCrossRefGoogle Scholar
  41. Holmberg K, Tuy H (1999) A production-transportation problem with stochastic demand and concave production costs. Math Program 85:157–179MathSciNetzbMATHCrossRefGoogle Scholar
  42. Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manage Sci 47:295–307zbMATHCrossRefGoogle Scholar
  43. Jucker JV, Carlson C (1976) The simple plant-location problem under uncertainty. Oper Res 24:1045–1055zbMATHCrossRefGoogle Scholar
  44. Kınay OB, Kara BY, Saldanha-da-Gama F, Correia I (2018) Modeling the shelter site location problem using chance constraints: a case study for Istanbul. Eur J Oper Res 270:132–145MathSciNetzbMATHCrossRefGoogle Scholar
  45. Kınay OB, Kara BY, Saldanha-da-Gama F (2019) On multi-criteria chance-constrained capacitated single-source discrete facility location problems. Omega 83:107–122CrossRefGoogle Scholar
  46. Kiya F, Davoudpour H (2012) Stochastic programming approach to re-designing a warehouse network under uncertainty. Transport Res E-Log 48:919–936CrossRefGoogle Scholar
  47. Kleywegt A, Shapiro A, Homem-de-Mello T (2001) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12:479–502MathSciNetzbMATHCrossRefGoogle Scholar
  48. Kouvelis P, Yu G (1997) Robust discrete optimization. Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  49. Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with complete recourse. Oper Res Lett 13:133–142MathSciNetzbMATHCrossRefGoogle Scholar
  50. Laporte G, Louveaux FV, Van hamme L (1994) Exact solution to a location problem with stochastic demands. Transport Sci 28:95–103Google Scholar
  51. Lim GJ, Sonmez AD (2013) γ-robust facility relocation problem. Eur J Oper Res 229:67–74MathSciNetzbMATHCrossRefGoogle Scholar
  52. Lin CKY (2009) Stochastic single-source capacitated facility location model with service level requirements. Int J Prod Econ 117:439–451CrossRefGoogle Scholar
  53. Listeş O, Dekker R (2005) A stochastic approach to a case study for product recovery network design. Eur J Oper Res 160:268–287zbMATHCrossRefGoogle Scholar
  54. López-de-los-Mozos MC, Puerto J, Rodríguez-Chía AM (2013) Robust mean absolute deviation problems on networks with linear vertex weights. Networks 61:76–85MathSciNetzbMATHCrossRefGoogle Scholar
  55. Louveaux FV (1986) Discrete stochastic location models. Ann Oper Res 6:23–34CrossRefGoogle Scholar
  56. Louveaux FV (1993) Stochastic location analysis. Locat Sci 1:127–154zbMATHGoogle Scholar
  57. Louveaux FV, Peeters D (1992) A dual-based procedure for stochastic facility location. Oper Res 40:564–573MathSciNetzbMATHCrossRefGoogle Scholar
  58. Lu C-C (2013) Robust weighted vertex p-center model considering uncertain data: an application to emergency management. Eur J Oper Res 230:113–121MathSciNetzbMATHCrossRefGoogle Scholar
  59. Lu C-C, Sheu J-B (2013) Robust vertex p-center model for locating urgent relief distribution centers. Comput Oper Res 40:2128–2137MathSciNetzbMATHCrossRefGoogle Scholar
  60. Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints. SIAM J Optim 19:674–699MathSciNetzbMATHCrossRefGoogle Scholar
  61. Marques MC, Dias JM (2018) Dynamic location problem under uncertainty with a regret-based measure of robustness. Int Trans Oper Res 25:1361–1381MathSciNetzbMATHCrossRefGoogle Scholar
  62. Mausser HE, Laguna M (1998) A new mixed integer formulation for the maximum regret problem. Int Trans Oper Res 5:389–403CrossRefGoogle Scholar
  63. Mirchandani PB, Oudjit A, Wong RT (1985) ‘Multidimensional’ extensions and a nested dual approach for the m-median problem. Eur J Oper Res 21:121–137MathSciNetzbMATHCrossRefGoogle Scholar
  64. Mo Y, Harrison TP (2005) A conceptual framework for robust supply chain design under demand uncertainty. In: Geunes J, Pardalos PM (eds) Supply chain optimization. Springer, New York, pp 243–263zbMATHCrossRefGoogle Scholar
  65. Nickel S, Saldanha-da-Gama F, Ziegler H-P (2012) A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega 40:511–524CrossRefGoogle Scholar
  66. Nikoofal ME, Sadjadi SJ (2010) A robust optimization model for p-median problem with uncertain edge lengths. Int J Adv Manuf Tech 50:391–397CrossRefGoogle Scholar
  67. Oakley J (2017) SHELF: Tools to Support the Sheffield Elicitation Framework (R package). https://github.com/OakleyJ/SHELF
  68. O’Hagan A (1998) Eliciting expert beliefs in substantial practical applications. J Roy Stat Soc D-Sta, 47:21–35CrossRefGoogle Scholar
  69. Pagnoncelli BK, Ahmed S, Shapiro A (2009) Sample average approximation method for chance constrained programming: theory and applications. J Optim Theory Appl 142:399–416MathSciNetzbMATHCrossRefGoogle Scholar
  70. Pan F, Nagi R (2010) Robust supply chain design under uncertain demand in agile manufacturing. Comput Oper Res 37:668–683zbMATHCrossRefGoogle Scholar
  71. Ravi R, Sinha A (2004) Hedging uncertainty: approximation algorithms for stochastic optimization problems. Lect Notes Compu Sci 3064:101–115MathSciNetzbMATHCrossRefGoogle Scholar
  72. ReVelle CS, Hogan K (1989) The maximum availability location problem. Transport Sci 23:192–200MathSciNetzbMATHCrossRefGoogle Scholar
  73. Rockafeller R, Wets RJ-B (1991) Scenario and policy aggregation in optimisation under uncertainty. Math Oper Res 16:119–147MathSciNetCrossRefGoogle Scholar
  74. Romauch M, Hartl RF (2005) Dynamic facility location with stochastic demands. Lect Notes Compu Sci 3777:180–189zbMATHCrossRefGoogle Scholar
  75. Rosenhead J, Elton M, Gupta SK (1972) Robustness and optimality as criteria for strategic decisions. Oper Res Quart 23:413–431CrossRefGoogle Scholar
  76. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167:96–115MathSciNetzbMATHCrossRefGoogle Scholar
  77. Schütz P, Stougie L, Tomasgard A (2008) Stochastic facility location with general long-run costs and convex short-run costs. Comput Oper Res 35:2988–3000MathSciNetzbMATHCrossRefGoogle Scholar
  78. Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur J Oper Res 199:409–419zbMATHCrossRefGoogle Scholar
  79. Serra D, Marianov V (1998) The p-median problem in a changing network: the case of Barcelona. Loc Sci 6:383–394CrossRefGoogle Scholar
  80. Serra D, Ratick S, ReVelle CS (1996) The maximum capture problem with uncertainty. Environ Plann 23:49–59CrossRefGoogle Scholar
  81. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM Series on Optimization, PhiladelphiazbMATHCrossRefGoogle Scholar
  82. Snyder L (2006) Facility location under uncertainty: a review. IIE Trans 38:537–554CrossRefGoogle Scholar
  83. Snyder L, Daskin MS (2006) Stochastic p-robust location problems. IIE Trans 38:971–985CrossRefGoogle Scholar
  84. Snyder L, Daskin MS, Teo C-P (2007) The stochastic location model with risk pooling. Eur J Oper Res 179:1221–1238zbMATHCrossRefGoogle Scholar
  85. Sonmez AD, Lim GJ (2012) A decomposition approach for facility location and relocation problem with uncertain number of future facilities. Eur J Oper Res 218:327–338MathSciNetzbMATHCrossRefGoogle Scholar
  86. Wang X, Xu D, Zhao XD (2011) A primal-dual approximation algorithm for stochastic facility location problem with service installation costs. Front Math China 6:957–964MathSciNetzbMATHCrossRefGoogle Scholar
  87. Weaver JR, Church RL (1983) Computational procedures for location problems on stochastic networks. Transport Sci 17:168–180CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Matemática e Centro de Matemática e Aplicações, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Departamento de Estatística e Investigação Operacional, Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations