Locating Dimensional Facilities in a Continuous Space

  • Anita SchöbelEmail author


Many applications in data analysis such as regression, projective clustering, or support vector machines can be modeled as location problems in which the facilities to be located are not represented by points but as dimensional structures. Examples for one-dimensional facilities are straight lines, line segments, or circles while boxes, strips, or balls are two-dimensional facilities. In this chapter we discuss the location of lines and circles in the plane, the location of hyperplanes and hyperspheres in higher dimensional spaces and the location of some other dimensional facilities. We formulate the resulting location problems and point out applications in statistics, operations research and data analysis. We identify important properties and review the basic solution techniques and algorithmic approaches. Our focus lies on presenting a unified understanding of the common characteristics these problems have, and on reviewing the new findings obtained in this field within the last years.


Line location Hyperplane location Circle location Finite dominating set Mathematical programming Norms Block norms Computational geometry Data analysis 



I want to thank Robert Schieweck for providing useful hints on line and hyperplane location problems.


  1. Agarwal P, Efrat A, Sharir M, Toledo S (1993) Computing a segment center for a planar point set. J Algorithm 15:314–323MathSciNetzbMATHCrossRefGoogle Scholar
  2. Agarwal P, Aronov B, Peled S, Sharir M (1999) Approximation and exact algorithms for minimum-width annuli and shells. In: Proceedings of the 15th ACM symposium on computational geometry, pp 380–389Google Scholar
  3. Agarwal P, Peled SH, Varadarajan K (2004) Approximation extent measures of points. J Assoc Comput Mach 51:605–635zbMATHGoogle Scholar
  4. Alonso J, Martini H, Spirova M (2012a) Minimal enclosing discs, circumcircles, and circumcenters in normed planes (part i). Comp Geom-Theor Appl 45:258–274MathSciNetzbMATHCrossRefGoogle Scholar
  5. Alonso J, Martini H, Spirova M (2012b) Minimal enclosing discs, circumcircles, and circumcenters in normed planes (part ii). Comp Geom-Theor Appl 45:350–369MathSciNetzbMATHCrossRefGoogle Scholar
  6. Baldomero-Naranjo M, Marténez-Merino LI, Rodríguez-Chía AM (2018) Exact and heuristic approaches for support vector machine with l1 ramp loss. EWGLA XXIVGoogle Scholar
  7. Bennet K, Mangasarian O (1992) Robust linear programming discrimination of two linearly inseparable sets. Optim Methods Softw 1:23–34CrossRefGoogle Scholar
  8. Bertsimas D, Shioda R (2007) Classification and regression via integer optimization. Oper Res 55:252–271MathSciNetzbMATHCrossRefGoogle Scholar
  9. Blanco V, Puerto J, Salmerón, R (2018) A general framework for locating hyperplanes to fitting set of points. Comput Oper Res 95:172–193MathSciNetzbMATHCrossRefGoogle Scholar
  10. Blanquero R, Carrizosa E, Hansen P (2009) Locating objects in the plane using global optimization techniques. Math Oper Res 34:837–858MathSciNetzbMATHCrossRefGoogle Scholar
  11. Blanquero R, Carrizosa E, Schöbel A, Scholz D (2011) Location of a line in the three-dimensional space. Eur J Oper Res 215:14–20zbMATHCrossRefGoogle Scholar
  12. Brimberg J, Nickel S (2009) Constructing a DC decomposition for ordered median problems. J Global Optim 45:187–201MathSciNetzbMATHCrossRefGoogle Scholar
  13. Brimberg J, Wesolowsky G (2000) Note: facility location with closest rectangular distances. Nav Res Logist 47:77–84MathSciNetzbMATHCrossRefGoogle Scholar
  14. Brimberg J, Juel H, Schöbel A (2002) Linear facility location in three dimensions—models and solution methods. Oper Res 50:1050–1057MathSciNetzbMATHCrossRefGoogle Scholar
  15. Brimberg J, Juel H, Schöbel A (2003) Properties of 3-dimensional line location models. Ann Oper Res 122:71–85MathSciNetzbMATHCrossRefGoogle Scholar
  16. Brimberg J, Juel H, Schöbel A (2009a) Locating a circle on the plane using the minimax criterion. Stud Locat Anal 17:46–60MathSciNetzbMATHGoogle Scholar
  17. Brimberg J, Juel H, Schöbel A (2009b) Locating a minisum circle in the plane. Discret Appl Math 157:901–912MathSciNetzbMATHCrossRefGoogle Scholar
  18. Brimberg J, Juel H, Körner MC, Schöbel A (2011a) Locating a general minisum ‘circle’ on the plane. 4OR-Q J Oper Res 9:351–370Google Scholar
  19. Brimberg J, Juel H, Körner MC, Schöbel A (2011b) Locating an axis-parallel rectangle on a manhattan plane. Top 22:185–207MathSciNetzbMATHCrossRefGoogle Scholar
  20. Brimberg J, Juel H, Körner MC, Schöbel A (2015a) On models for continuous facility location with partial coverage. J Oper Res Soc 66(1):33–43CrossRefGoogle Scholar
  21. Brimberg J, Schieweck R, Schöbel A (2015b) Locating a median line with partial coverage distance. J Glob Optim 62(2):371–389MathSciNetzbMATHCrossRefGoogle Scholar
  22. Brodal GS, Jacob R (2002) Dynamic planar convex hull. In: Proceedings of the 43rd annual IEEE symposium on foundations of computer science, pp 617–626Google Scholar
  23. Carrizosa E, Plastria F (2008) Optimal expected-distance separating halfspace. Math Oper Res 33:662–677MathSciNetzbMATHCrossRefGoogle Scholar
  24. Chan TM (2000) Approximating the diameter, width, smalat enclosing cylinder, and minimum-width annulus. In: Proceedings of the 16th annual symposium on computational geometry. ACM, New York, pp 300–309Google Scholar
  25. Cheng SW (1996) Widest empty L-shaped corridor. Inf Process Lett 58:277–283MathSciNetzbMATHCrossRefGoogle Scholar
  26. Chernov N, Sapirstein P (2008) Fitting circles to data with correlated noise. Comput Stat Data Anal 52:5328–5337MathSciNetzbMATHCrossRefGoogle Scholar
  27. Coope I (1993) Circle fitting by linear and nonlinear least squares. J Optim Theory Appl 76:381–388MathSciNetzbMATHCrossRefGoogle Scholar
  28. Cooper L (1964) Heuristic methods for location-allocation problems. SIAM Rev 6:37–53MathSciNetzbMATHCrossRefGoogle Scholar
  29. Crawford J (1983) A non-iterative method for fitting circular arcs to measured points. Nucl Instrum Methods Phys Res 211:223–225CrossRefGoogle Scholar
  30. Das G, Mukhopadhyay D, Nandy S (2009) Improved algorithm for the widest empty 1-corner corridor. Inf Process Lett 109:1060–1065MathSciNetzbMATHCrossRefGoogle Scholar
  31. Deshpande A, Rademacher L, Vempala S, Wang G (2006) Matrix approximation and projective clustering via volume sampling. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms. ACM, New York, pp 1117–1126Google Scholar
  32. Dey T (1998) Improved bounds for planar k-sets and related problems. Discret Comput Geom 19:373–382MathSciNetzbMATHCrossRefGoogle Scholar
  33. Díaz-Bánez JM, Mesa J, Schöbel A (2004) Continuous location of dimensional structures. Eur J Oper Res 152:22–44MathSciNetzbMATHCrossRefGoogle Scholar
  34. Díaz-Bánez JM, López MA, Sellarès JA (2006a) Locating an obnoxious plane. Eur J Oper Res 173:556–564MathSciNetzbMATHCrossRefGoogle Scholar
  35. Díaz-Bánez JM, López MA, Sellarès JA (2006b) On finding a widest empty 1-corner corridor. Inf Process Lett 98:199–205MathSciNetzbMATHCrossRefGoogle Scholar
  36. Díaz-Bánez J, Korman M, Pérez-Lantero P, Ventura I (2013) The 1-median and 1-highway problem. Eur J Oper Res 225:552–557MathSciNetzbMATHCrossRefGoogle Scholar
  37. Dicks DR (1985) Early Greek astronomy to aristotle (Aspects of Greek and Roman life series). Cornell University, IthacaGoogle Scholar
  38. Drezner Z, Brimberg J (2014) Fitting concentric circles to measurements. Math Method Oper Res 29:119–133MathSciNetzbMATHCrossRefGoogle Scholar
  39. Drezner T, Drezner Z (2007) Equity models in planar location. Comput Manag Sci 4:1–16MathSciNetzbMATHCrossRefGoogle Scholar
  40. Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of non-convex facility location problems. Oper Res 52:128–135zbMATHCrossRefGoogle Scholar
  41. Drezner Z, Klamroth K, Schöbel A, Wesolowsky G (2001) The weber problem. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, chap 1, pp 1–36Google Scholar
  42. Drezner Z, Steiner S, Wesolowsky G (2002) On the circle closest to a set of points. Comput Oper Res 29:637–650MathSciNetzbMATHCrossRefGoogle Scholar
  43. Drezner T, Drezner Z, Schöbel A (2018) The Weber obnoxious facility location model: a Big Arc Small Arc approach. Comput Oper Res 98:240–250MathSciNetzbMATHCrossRefGoogle Scholar
  44. Ebara H, Fukuyama N, Nakano H, Nakanishi Y (1989) Roundness algorithms using the voronoi diagrams. In: Proceedings of the 1st Canadian conference on computational geometry, p 41Google Scholar
  45. Edelsbrunner H (1985) Finding transversals for sets of simple geometric figures. Theor Comput Sci 35:55–69MathSciNetzbMATHCrossRefGoogle Scholar
  46. Efrat A, Sharir M (1996) A near-linear algorithm for the planar segment-center problem. Discret Comput Geom 16:239–257MathSciNetzbMATHCrossRefGoogle Scholar
  47. Espejo I, Rodríguez-Chía A (2011) Simultaneous location of a service facility and a rapid transit line. Comput Oper Res 38:525–538MathSciNetzbMATHCrossRefGoogle Scholar
  48. Espejo I, Rodríguez-Chía A (2012) Simultaneous location of a service facility and a rapid transit line. Comput Oper Res 39:2899–2903MathSciNetzbMATHCrossRefGoogle Scholar
  49. Farago F, Curtis M (1994) Handbook of dimensional measurement, 3rd edn. Industrial Press Inc., New YorkGoogle Scholar
  50. Gander W, Golub G, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT 34:558–578MathSciNetzbMATHCrossRefGoogle Scholar
  51. García-López J, Ramos P, Snoeyink J (1998) Fitting a set of points by a circle. Discret Comput Geom 20:389–402MathSciNetzbMATHCrossRefGoogle Scholar
  52. Gluchshenko O (2008) Annulus and center location problems. PhD Thesis. Technische Universität, KaiserslauternGoogle Scholar
  53. Gluchshenko ON, Hamacher HW, Tamir A (2009) An optimal o(n log n) algorithm for finding an enclosing planar rectilinear annulus of minimum width. Oper Res Lett 37:168–170MathSciNetzbMATHCrossRefGoogle Scholar
  54. Golub G, van Loan C (1980) An analysis of the total least squares problem. SIAM J Numer Anal 17:883–893MathSciNetzbMATHCrossRefGoogle Scholar
  55. Hamacher H, Nickel S (1995) Restricted planar location problems and applications. Nav Res Log 42:967–992MathSciNetzbMATHCrossRefGoogle Scholar
  56. Har-Peled S, Varadarajan K (2002) Projective clustering in high dimensions using core-sets. In: Proceedings of the 18th annual symposium on computational geometry. ACM, New York, pp 312–318Google Scholar
  57. Helly E (1923) Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahrbuch der Deutsch Math Verein 32:175–176zbMATHGoogle Scholar
  58. Houle M, Toussaint G (1985) Computing the width of a set. In: Proceedings of the 1st ACM symposium on computational geometry, pp 1–7Google Scholar
  59. Imai H, Lee D, Yang CD (1992) 1-segment center problems. ORSA J Comput 4:426–434MathSciNetzbMATHCrossRefGoogle Scholar
  60. Jäger S, Schöbel A (2018) The blockwise coordinate descent method for integer programs. Math Meth Oper Res 2019:1–25. Preprint Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen: 2018-15Google Scholar
  61. Janardan R, Preparata F (1996) Widest-corridos problems. Nord J Comput 1:231–245Google Scholar
  62. Kapelushnik L (2008) Computing the k-centrum and the ordered median hyperplane. Master’s Thesis, School of Computer Science, Tel-Aviv UniversityGoogle Scholar
  63. Kasa I (1976) A circle fitting procedure and its error analysis. IEEE Trans Instrum Meas 25:8–14CrossRefGoogle Scholar
  64. Kelachankuttu H, Batta R, Nagi R (2007) Contour line construction for a new rectangular facility in an existing layout with rectangular departments. Eur J Oper Res 180:149–162zbMATHCrossRefGoogle Scholar
  65. Korneenko N, Martini H (1990) Approximating finite weighted point sets by hyperplanes. Lect Notes Comput Sci 447:276–286MathSciNetzbMATHCrossRefGoogle Scholar
  66. Korneenko N, Martini H (1993) Hyperplane approximation and related topics. In: Pach J (ed) New trends in discrete and computational geometry. Springer, New York, pp 135–162zbMATHCrossRefGoogle Scholar
  67. Körner MC (2011) Minisum hyperspheres. Springer, New YorkzbMATHCrossRefGoogle Scholar
  68. Körner MC, Brimberg J, Juel H, Schöbel A (2009) General circle location. In: Proceedings of the 21st Canadian conference on computational geometry, pp 111–114Google Scholar
  69. Körner MC, Brimberg J, Juel H, Schöbel A (2011) Geometric fit of a point set by generalized circles. J Glob Optim 51:115–132MathSciNetzbMATHCrossRefGoogle Scholar
  70. Körner MC, Martini H, Schöbel A (2012) Minisum hyperspheres in normed spaces. Discret Appl Math 16:2221–2233zbMATHCrossRefGoogle Scholar
  71. Krempasky T (2012) Locating median lines and hyperplanes with a restriction on the slope. PhD Thesis, Universität Göttingen, GöttingenGoogle Scholar
  72. Le V, Lee D (1991) Out-of-roundness problem revisited. IEEE Trans Pattern Anal Mach Intell 13:217–223CrossRefGoogle Scholar
  73. Lee D, Ching Y (1985) The power of geometric duality revisited. Inf Process Lett 21:117–122MathSciNetzbMATHCrossRefGoogle Scholar
  74. Lozano AJ, Plastria F (2009) The ordered median euclidean straight-line location problem. Stud Locat Anal 17:29–43MathSciNetzbMATHGoogle Scholar
  75. Lozano AJ, Mesa J, Plastria F (2010) The k-centrum straight-line location problem. J Math Model Algorithm 9:1–17MathSciNetzbMATHCrossRefGoogle Scholar
  76. Lozano AJ, Mesa J, Plastria F (2015) Location of weighted anti-ordered median straight lines with euclidean distances. Discrete Appl Math. 182:122–133 Scholar
  77. Mallozzi L, Puerto J, Rodríguez-Madrena M (2019) On location-allocation problems for dimensional facilities. J Optim Theory Appl 182(2):730–767MathSciNetzbMATHCrossRefGoogle Scholar
  78. Mangasarian O (1999) Arbitrary-norm separating plane. Oper Res Lett 24:15–23MathSciNetzbMATHCrossRefGoogle Scholar
  79. Martini H, Schöbel A (1998) Median hyperplanes in normed spaces—a survey. Discret Appl Math 89:181–195MathSciNetzbMATHCrossRefGoogle Scholar
  80. Martini H, Schöbel A (1999) A characterization of smooth norms. Geom Dedicata 77:173–183MathSciNetzbMATHCrossRefGoogle Scholar
  81. Megiddo N (1984) Linear programming in linear time when the dimension is fixed. J Assoc Comput Mach 31:114–127MathSciNetzbMATHCrossRefGoogle Scholar
  82. Megiddo N, Tamir A (1982) On the complexity of locating linear facilities in the plane. Oper Res Lett 1:194–197MathSciNetzbMATHCrossRefGoogle Scholar
  83. Megiddo N, Tamir A (1983) Finding least-distance lines. SIAM J Algebra Discr 4:207–211MathSciNetzbMATHCrossRefGoogle Scholar
  84. Morris J, Norback J (1980) A simple approach to linear facility location. Transp Sci 14:1–8CrossRefGoogle Scholar
  85. Morris J, Norback J (1983) Linear facility location—solving extensions of the basic problem. Eur J Oper Res 12:90–94MathSciNetzbMATHCrossRefGoogle Scholar
  86. Moura L, Kitney R (1992) A direct method for least-squares circle fitting. Comput Phys Commun 64:57–63MathSciNetCrossRefGoogle Scholar
  87. Mukherjee J, Sinha Mahapatra PR, Karmakar A, Das S (2013) Minimum-width rectangular annulus. Theor Comput Sci 508:74–80MathSciNetzbMATHCrossRefGoogle Scholar
  88. Narula SC, Wellington JF (1982) The minimum sum of absolute errors regression: a state of the art survey. Int Stat Rev 50:317–326MathSciNetzbMATHCrossRefGoogle Scholar
  89. Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, BerlinzbMATHGoogle Scholar
  90. Nievergelt Y (2002) A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres. Numer Math 91:257–303MathSciNetzbMATHCrossRefGoogle Scholar
  91. Nievergelt Y (2004) Perturbation analysis for circles, spheres, and generalized hyperspheres fitted to data by geometric total least-squares. Math Comput 73:169–180MathSciNetzbMATHCrossRefGoogle Scholar
  92. Nievergelt Y (2010) Median spheres: theory, algorithms, applications. Numer Math 114:573–606MathSciNetzbMATHCrossRefGoogle Scholar
  93. Overmars MH, van Leeuwen J (1981) Maintenance of configurations in the plane. J Comput Syst Sci 23:166–204MathSciNetzbMATHCrossRefGoogle Scholar
  94. Plastria F (1992) GBSSS: the generalized big square small square method for planar single-facility location. Eur J Oper Res 62:163–174zbMATHCrossRefGoogle Scholar
  95. Plastria F (2001) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36Google Scholar
  96. Plastria F, Carrizosa E (2001) Gauge-distances and median hyperplanes. J Optim Theory Appl 110:173–182MathSciNetzbMATHCrossRefGoogle Scholar
  97. Plastria F, Carrizosa E (2012) Minmax-distance approximation and separation problems: geometrical properties. Math Program 132:153–177MathSciNetzbMATHCrossRefGoogle Scholar
  98. Rivlin T (1979) Approximation by circles. Computing 21:1–17MathSciNetzbMATHCrossRefGoogle Scholar
  99. Robins G, Shute C (1987) The Rhind mathematical papyrus. An ancient Egyptian text. British Museum, LondonGoogle Scholar
  100. Rockafellar R (1970) Convex analysis. Princeton Landmarks, PrincetonzbMATHCrossRefGoogle Scholar
  101. Rorres C, Romano D (1997) Finding the center of a circular starting line in an ancient greek stadium. SIAM Rev 39:745–754MathSciNetzbMATHCrossRefGoogle Scholar
  102. Sarkar A, Batta R, Nagi R (2007) Placing a finite size facility with a center objective on a rectangular plane with barriers. Eur J Oper Res 179:1160–1176zbMATHCrossRefGoogle Scholar
  103. Savas S, Batta R, Nagi R (2002) Finite-size facility placement in the presence of barriers to rectilinear travel. Oper Res 50:1018–1031MathSciNetzbMATHCrossRefGoogle Scholar
  104. Schieweck R, Schöbel A (2012) Properties and algorithms for line location with extensions. In: Proceedings of the 28th European Workshop on computational Geometry, Italy, pp 185–188Google Scholar
  105. Schöbel A (1996) Locating least-distant lines with block norms. Stud Locat Anal 10:139–150MathSciNetzbMATHGoogle Scholar
  106. Schöbel A (1997) Locating line segments with vertical distances. Stud Locat Anal 11:143–158MathSciNetzbMATHGoogle Scholar
  107. Schöbel A (1998) Locating least distant lines in the plane. Eur J Oper Res 106:152–159CrossRefGoogle Scholar
  108. Schöbel A (1999a) Locating lines and Hyperplanes—theory and algorithms. No. 25 in applied optimization series. Kluwer, DordrechtGoogle Scholar
  109. Schöbel A (1999b) Solving restricted line location problems via a dual interpretation. Discret Appl Math 93:109–125MathSciNetzbMATHCrossRefGoogle Scholar
  110. Schöbel A (2003) Anchored hyperplane location problems. Discret Comput Geom 29:229–238MathSciNetzbMATHCrossRefGoogle Scholar
  111. Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122MathSciNetzbMATHCrossRefGoogle Scholar
  112. Schömer E, Sellen J, Teichmann M, Yap C (2000) Smallest enclosing cylinders. Algorithmica 27:170–186MathSciNetzbMATHCrossRefGoogle Scholar
  113. Späth H (1997) Least squares fitting of ellipses and hyperbolas. Comput Stat 12:329–341MathSciNetzbMATHGoogle Scholar
  114. Späth H (1998) Least-squares fitting with spheres. J Optim Theory Appl 96:191–199MathSciNetzbMATHCrossRefGoogle Scholar
  115. Sun T (2009) Applying particle swarm optimization algorithm to roundness measurement. Expert Syst Appl 36:3428–3438CrossRefGoogle Scholar
  116. Suzuki T (2005) Optimal location of orbital routes in a circular city. Presented at ISOLDE X—10th international symposium on locational decisions, Sevilla and Islantilla, June 2–8Google Scholar
  117. Swanson K, Lee DT, Wu V (1995) An optimal algorithm for roundness determination on convex polygons. Comp Geom-Theor Appl 5:225–235MathSciNetzbMATHCrossRefGoogle Scholar
  118. Ventura J, Yeralan S (1989) The minmax center estimation problem. Eur J Oper Res 41:64–72zbMATHCrossRefGoogle Scholar
  119. Wang L, Gordon MD, Zhu J (2006) Regularized least absolute deviations regression and an efficient algorithm for parameter tuning. In: Proceedings of the 6th international conference on data mining. IEEE, Piscataway, pp 690–700Google Scholar
  120. Wesolowsky G (1972) Rectangular distance location under the minimax optimality criterion. Transport Sci 6:103–113MathSciNetCrossRefGoogle Scholar
  121. Wesolowsky G (1975) Location of the median line for weighted points. Environ Plann A 7:163–170CrossRefGoogle Scholar
  122. Yamamoto P, Kato K, Imai K, Imai H (1988) Algorithms for vertical and orthogonal L1 linear approximation of points. In: Proceedings of the 4th annual symposium on computational geometry, pp 352–361Google Scholar
  123. Yeralan S, Ventura J (1988) Computerized roundness inspection. Int J Prod Res 26:1921–1935CrossRefGoogle Scholar
  124. Zemel E (1984) An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inf Process Lett 18:123–128MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University Kaiserslautern and Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations