Advertisement

The Design of Rapid Transit Networks

  • Gilbert Laporte
  • Juan A. MesaEmail author
Chapter
  • 50 Downloads

Abstract

Metros and other rapid transit systems increase the mobility of urban populations while decreasing congestion and pollution. There are now over 210 cities with a metro system in the world. The design of a rapid transit system is a hard problem involving several players, multiple objectives, sizeable costs and a high level of uncertainty. Operational research techniques cannot fully solve the problem, but they can generate alternative solutions among which the decision makers can choose, and they can be employed to solve some specific subproblems. The scientific literature on rapid transit location planning has grown at a fast rate over the past 25 years. This chapter provides an account of some of the most important results. It first describes the main objectives and indices used in the assessment of rapid transit systems. It then reviews the main models and algorithms used to design such systems. The cases of a single alignment and of a full network are treated separately. Then follows a section on the location of stations on an already existing network.

Keywords

Metro Rapid transit Network design Modal competition Stations Location 

Notes

Acknowledgements

This work was partially supported by the Canadian Natural Sciences and Engineering Research Council under grant 2015-06189, and by project MTM2015-67706-P (MINECO/FEDER, UE).

References

  1. An K, Lo H (2016) Two-phase stochastic program for transit network design under demand uncertainty. Transp Res B Methodol 84:157–181CrossRefGoogle Scholar
  2. Barbadillo J, Saldaña J (2011) Navigation in large subway networks: an informational approach. Physica A 390:374–386CrossRefGoogle Scholar
  3. Barrena E, De-Los-Santos A, Mesa JA, Perea F (2013) Analyzing connectivity in collective transportation line networks by means of hypergraphs. Eur Phys J Spec Top 215:93–108CrossRefGoogle Scholar
  4. Barrena E, De-Los-Santos A, Laporte G, Mesa JA (2015) Transferability of collective transportation line network from a topological and passenger demand perspective. Netw Heterog Media 10:1–16MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bruno G, Ghiani G, Improta G (1998) A multi-modal approach to the location of a rapid transit line. Eur J Oper Res 104:321–332zbMATHCrossRefGoogle Scholar
  6. Bruno G, Gendreau M, Laporte G (2002) A heuristic for the location of a rapid transit line. Comput Oper Res 29:1–12zbMATHCrossRefGoogle Scholar
  7. Cadarso L, Marín Á (2012) Recoverable robustness in rapid transit network design. Procedia Soc Behav Sci 54:1288–1297CrossRefGoogle Scholar
  8. Cadarso L, Marín Á (2016) Rapid transit network design considering risk. Electron Notes Discrete Math 52:29–36MathSciNetzbMATHCrossRefGoogle Scholar
  9. Cadarso L, Marín Á (2017) Improved rapid transit network model considering transfer effects. Ann Oper Res 258:547–567MathSciNetzbMATHCrossRefGoogle Scholar
  10. Canca D, De-Los-Santos A, Laporte G, Mesa JA (2016) A general rapid network design, line planning and fleet investment integrated model. Ann Oper Res 246:127–144MathSciNetzbMATHCrossRefGoogle Scholar
  11. Canca D, De-Los-Santos A, Laporte G, Mesa JA (2017) An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Comput Oper Res 78:1–14MathSciNetzbMATHCrossRefGoogle Scholar
  12. Carrizosa E, Harbering J, Schöbel A (2016) Minimizing the passenger’ travelling time in the stop location problem. J Oper Res Soc 67:1325–1337CrossRefGoogle Scholar
  13. Criado R, Hernández-Bermejo B, Romance M (2007) Efficiency, vulnerability and cost: an overview with applications to subway networks worldwide. Int J Bifurcat Chaos 17:2289–2301zbMATHCrossRefGoogle Scholar
  14. Criado R, Flores J, García del Amo A, Romance M, Barrena E, Mesa JA (2016) Line graphs for a multiplex network. Chaos 26:065309MathSciNetzbMATHCrossRefGoogle Scholar
  15. Current JR, ReVelle CS, Cohon J (1985) The maximum covering/shortest path problems: a multiobjective network design and routing formulation. Eur J Oper Res 21:189–199MathSciNetzbMATHCrossRefGoogle Scholar
  16. De Cea J, Ortúzar JD, Willumsen LG (1986) Evaluating marginal improvements to a transport network: an application to the Santiago underground. Transportation 13:211–233CrossRefGoogle Scholar
  17. De-Los-Santos A, Laporte G, Mesa JA, Perea F (2012) Evaluating passenger robustness in a rail transit network. Transp Res C Emerg Technol 20:34–46CrossRefGoogle Scholar
  18. Derrible S, Kennedy C (2010) The complexity and robustness of metro networks. Physica A 389:3678–3691CrossRefGoogle Scholar
  19. Díaz JM, Mesa JA, Schöbel A (2004) Continuous location of dimensional structures. Eur J Oper Res 152:22–44MathSciNetzbMATHCrossRefGoogle Scholar
  20. D’Lima M, Medda F (2015) A new measure of resilience: an application to the London Underground. Transport Res A Pol 81:35–46Google Scholar
  21. Dufourd H, Gendreau M, Laporte G (1996) Locating a transit line using tabu search. Location Sci 4:1–19zbMATHCrossRefGoogle Scholar
  22. Escudero LF, Muñoz S (2009) An approach for solving a modification of the extended rapid transit network design problem. Top 17:320–334MathSciNetzbMATHCrossRefGoogle Scholar
  23. Escudero LF, Muñoz S (2014) A survey-based approach for selecting the stations and links for a rapid transit network. Int J Comput Int Sys 7:565–581CrossRefGoogle Scholar
  24. Escudero LF, Muñoz S (2016) A survey-based approach for designing the lines of a rapid transit network. Discrete Appl Math 210:14–34MathSciNetzbMATHCrossRefGoogle Scholar
  25. Fan W, Machemehl RB (2006) Using a simulated annealing algorithm to solve the transit route network design problem. J Transp Eng 132:122–132CrossRefGoogle Scholar
  26. García-Archilla B, Lozano AJ, Mesa JA, Perea F (2013) GRASP algorithms for the robust railway network design problem. J Heuristics 19:399–422zbMATHCrossRefGoogle Scholar
  27. Gattuso D, Miriello E (2005) Compared analysis of metro network supported by graph theory. Netw Spat Econ 5:395–414MathSciNetzbMATHCrossRefGoogle Scholar
  28. Gendreau M, Laporte G, Mesa JA (1995) Locating rapid transit lines. J Adv Transp 29:145–162CrossRefGoogle Scholar
  29. Gross DRP, Hamacher HW, Horn S, Schöbel A (2009) Stop location design in public transportation networks: covering and accessibility objectives. Top 17:335–346MathSciNetzbMATHCrossRefGoogle Scholar
  30. Guan JF, Yang H, Wirasinghe SC (2006) Simultaneous optimization of transit line configuration and passenger line assignment. Transp Res B Methodol 40:885–902CrossRefGoogle Scholar
  31. Gutiérrez-Jarpa G, Obreque C, Laporte G, Marianov V (2013) Rapid transit network design for optimal cost and origin-destination demand capture. Comput Oper Res 40:3000–3009zbMATHCrossRefGoogle Scholar
  32. Gutiérrez-Jarpa G, Laporte G, Marianov V, Moccia L (2017) Multi-objective rapid transit network design with modal competition: the case on Concepción, Chile. Comput Oper Res 78:27–43MathSciNetzbMATHCrossRefGoogle Scholar
  33. Gutiérrez-Jarpa G, Laporte G, Marianov V (2018) Corridor-based metro network design with travel flow capture. Comput Oper Res 89:58–67MathSciNetzbMATHCrossRefGoogle Scholar
  34. Hamacher HW, Liebers A, Schöbel A, Wagner D, Wagner F (2001) Locating new stops in a railway network. Electron Notes Theor Comput Sci 50:13–23zbMATHCrossRefGoogle Scholar
  35. IEEE—Institute of Electrical and Electronics Engineers (1990) IEEE standard computer dictionary: a compilation of IEEE standard computer glossariesGoogle Scholar
  36. Jin J, Lu L, Sun L, Yin J (2015) Optimal allocation of protective resources in urban rail transit networks against intentional attacks. Transp Res E 84:73–87CrossRefGoogle Scholar
  37. Kermanshani S, Shafahi Y, Mollanejad M, Zangui M (2010) Rapid transit network design using simulated annealing. In: 12th WCTR, pp 1–15Google Scholar
  38. Körner M-C, Mesa JA, Perea F, Schöbel A, Scholz D (2014) A maximum trip covering location problem with an alternative mode transportation on tree networks and segments. Top 22:227–253MathSciNetzbMATHCrossRefGoogle Scholar
  39. Laporte G, Pascoal MMB (2015) Path based algorithms for metro network design. Comput Oper Res 62:78–94MathSciNetzbMATHCrossRefGoogle Scholar
  40. Laporte G, Mesa JA, Ortega FA (1997) Assessing the efficiency of rapid transit configurations. Top 5:95–104MathSciNetzbMATHCrossRefGoogle Scholar
  41. Laporte G, Mesa JA, Ortega FA (2002) Locating stations on rapid transit lines. Comput Oper Res 29:741–759zbMATHCrossRefGoogle Scholar
  42. Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63MathSciNetzbMATHCrossRefGoogle Scholar
  43. Laporte G, Marín Á, Mesa JA, Ortega FA (2007) An integrated methodology for the rapid transit network design problem. In: Geraets F, Kroon L, Schöbel A, Wagner D, Zaroliagis CD (eds) Algorithmic methods for railway optimization (Proceedings of ATMOS 2004). LNCS 4359, pp. 187–199Google Scholar
  44. Laporte G, Mesa JA, Ortega FA, Pozo MA (2009) Locating a metro line in a historical city centre: application to Sevilla. J Oper Res Soc 60:1462–1466CrossRefGoogle Scholar
  45. Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res C Emerg Technol 44:447–459Google Scholar
  46. Laporte, G, Marín Á, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45:54–65CrossRefGoogle Scholar
  47. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701,1–4CrossRefGoogle Scholar
  48. Latora V, Marchiori M (2002) Is the Boston subway a small-world network? Physica A 314:109–113zbMATHCrossRefGoogle Scholar
  49. Lee K, Jung W-S, Park J, Choi M (2008) Statistical analysis of the metropolitan Seoul subway system: network structure and passenger flows. Physica A 387:6231–6234CrossRefGoogle Scholar
  50. López-de-los-Mozos MC, Mesa JA, Schöbel A (2017) A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances. Eur J Oper Res 260:108–121MathSciNetzbMATHCrossRefGoogle Scholar
  51. López-Ramos F (2014) Integrating network design and frequency setting in public transportation networks: a survey. SORT Stat Oper Res Trans 38:181–214MathSciNetzbMATHGoogle Scholar
  52. López-Ramos F, Codina E, Marín Á, Guarnaschelli A (2017) Integrated approach to network design and frequency setting problem in railway rapid transit systems. Comput Oper Res 80:128–146MathSciNetzbMATHCrossRefGoogle Scholar
  53. Marín Á (2007) An extension to rapid transit design problem. Top 15:231–241MathSciNetzbMATHCrossRefGoogle Scholar
  54. Marín Á, García-Ródenas R (2009) Location of infrastructure in urban railway networks. Comput Oper Res 36:1461–1477zbMATHCrossRefGoogle Scholar
  55. Marín Á, Jaramillo P (2008) Urban rapid transit network capacity expansion. Eur J Oper Res 191:45–60MathSciNetzbMATHCrossRefGoogle Scholar
  56. Marín Á, Jaramillo P (2009) Urban rapid transit network design: accelerated Benders decomposition. Ann Oper Res 169:35–53MathSciNetzbMATHCrossRefGoogle Scholar
  57. Mattson L-G, Jenelius E (2015) Vulnerability and resilience of transport systems – a discussion of recent research. Transp Res A Pol 81:16–34CrossRefGoogle Scholar
  58. Mesa JA, Boffey B (1996) A review of extensive facility on networks. Eur J Oper Res 95:592–603zbMATHCrossRefGoogle Scholar
  59. Mesa JA, Ortega FA (2001) Park-and-ride station catchment areas in metropolitan rapid transit systems. In: Pursula M, Nittmäki J (eds) Mathematical methods on optimization in transportation systems. Kluwer, Dordrecht, pp 81–93CrossRefGoogle Scholar
  60. Metro de Granada (2013) http://www.urbanrail.net/eu/es/granada/granada.htm. Accessed 28 Apr 2019
  61. Musso A, Vuchic VR (1988) Characteristics of metro network and methodology for their evaluation. Transport Res Rec 1162:22–33Google Scholar
  62. Ortega FA, Piedra-de-la-Cuadra RA, Ventura S (2018) Applying an entropic analysis to locate rapid transit lines in sprawled cities. Int J Sustain Dev Plan 13:626–637CrossRefGoogle Scholar
  63. Puerto J, Ricca F, Scozzari A (2018) Extensive facility location problems on networks: an updated review. Top 26:187–226MathSciNetzbMATHCrossRefGoogle Scholar
  64. Roth C, Kang SM, Batty M, Barthelemy M (2012) A long-time limit for world subway networks. J Roy Soc Interface 9:2540–2550CrossRefGoogle Scholar
  65. Saidi S, Wirashinghe S, Kattan L (2016) Long-term planning for ring-radial urban rail transit networks. Transp Res B Methodol 86:128–146CrossRefGoogle Scholar
  66. Schöbel A (2005) Locating stops along bus or railway lines-A bicriteria problem. Ann Oper Res 136:211–227MathSciNetzbMATHCrossRefGoogle Scholar
  67. Seaton KA, Hackett LM (2004) Stations,trains and small-world networks. Physica A 339:635–644MathSciNetCrossRefGoogle Scholar
  68. Sen P, Dasgupta S, Chatterjee A, Sreeran PA, Mukherjee G, Manna SS (2002) Small-world properties of the Indian railway network. arXiv:cond-math/0208535v2 [cond-mat.soft], 31 December 2002Google Scholar
  69. Sociedad del Metro de Sevilla SA (2001) Proyecto general básico de la red de metro de Sevilla y programacón de fases (in Spanish). UTE Iberinsa and GhesaGoogle Scholar
  70. Sun DJ, Guan S (2016) Measuring vulnerability of urban metro network from line operation research. Transp Res A Pol 94:348–359CrossRefGoogle Scholar
  71. Sun DJ, Zhao Y, Lu QC (2015) Vulnerability analysis of urban rail transit networks: a case study of Shanghai, China. Sustainability 7:6919–6936CrossRefGoogle Scholar
  72. UITP (International Association of Public Transports) (2011) Metro service performance indicators. http://www.uitp.org/publications/corebriefs.cfm
  73. Vuchic VR (2005) Urban transit operations, planning and economics. Wiley, HobokenGoogle Scholar
  74. Vuchic VR, Newell GF (1968) Rapid transit interstation spacings for minimum travel time. Transp Sci 2: 303–339CrossRefGoogle Scholar
  75. Wang J-Y, Lin C-M (2010) Mass transit route network design using genetic algorithm. J Chin Inst Eng 33:301–315CrossRefGoogle Scholar
  76. Watts DJ, Strogatz SH (1998) The dynamics of ‘small-world’ networks. Nature 393:440–442zbMATHCrossRefGoogle Scholar
  77. Xing Y, Lu J, Chen S (2016) Weighted complex network analysis of Shanghai rail. Discrete Dyn Nat Soc 2016:8ppCrossRefGoogle Scholar
  78. Xing Y, Lu J, Chen S (2017) Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai metro. Public Transp 9:501–525CrossRefGoogle Scholar
  79. Yang Y, Liu M, Zhou M, Li F, Sun C (2015) Robustness assessment of urban rail transit based on complex network theory: a case study of the Beijing subway. Safety Sci 79:149–162CrossRefGoogle Scholar
  80. Yang Y, Chen A, Ning B, Tang T (2017) Measuring route diversity for urban rail transit networks: a case study of the Beijing metro network. IEEE Trans Intell Transp 18:259–268CrossRefGoogle Scholar
  81. Zhang J, Xu X, Hong L, Wang S, Fei Q (2011) Characteristics on hub networks of urban rail transit networks. Physica A 390:4562–4570CrossRefGoogle Scholar
  82. Zhang J, Zhao M, Liu H, Xu X (2013) Networked characteristics of the urban rail transit networks. Physica A 392:1538–1546CrossRefGoogle Scholar
  83. Zhang J, Wang S, Zhang Z, Zou K (2016) Characteristics on hub networks of urban rail transit networks. Physica A 447:502–507CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GERAD & Canada Research Chair in Distribution ManagementHEC MontréalMontréalCanada
  2. 2.Departamento de Matemática Aplicada II, Escuela Superior de IngeneríaUniversidad de SevillaSevillaSpain

Personalised recommendations