Introduction to Location Science

  • Gilbert Laporte
  • Stefan Nickel
  • Francisco Saldanha-da-GamaEmail author


This chapter introduces modern Location Science. It traces the roots of the area and describes the path leading to the full establishment of this research field. It identifies several disciplines having strong links with Location Science and offers examples of areas in which the knowledge accumulated in the field of location has been applied with great success. It describes the purpose and structure of this volume. Finally, it provides suggestions on how to make use of the contents presented in this book, namely for organizing general or specialized location courses targeting different audiences.


Location science Foundations Application areas Related disciplines Location courses 


  1. Avella P, Benati S, Cánovas-Martinez L, Dalby K, Di Girolamo D, Dimitrijevic B, Giannikos I, Guttman N, Hultberg TH, Fliege J, Muñoz-Márquez M, Ndiaye MM, Nickel S, Peeters P, Pérez-Brito D, Policastro S, Saldanha da Gama F, Zidda P (1998) Some personal views on the current state and the future of locational analysis. Eur J Oper Res 104:269–287CrossRefGoogle Scholar
  2. Balinski ML (1965) Integer programming: methods, uses, computation. Manag Sci 12:253–313MathSciNetCrossRefGoogle Scholar
  3. Benko D, Coroian D (2018) A new angle on the Fermat-Torricelli point. Coll Math J 49:195–199MathSciNetCrossRefGoogle Scholar
  4. Block D, DuPuis EM (2001) Making the country work for the city. Am J Econ Soc 60:79–98CrossRefGoogle Scholar
  5. Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Manag Sci 35:645–674MathSciNetCrossRefGoogle Scholar
  6. Brimberg J, Drezner Z (2013) A new heuristic for solving the p-median problem in the plane. Comput Oper Res 40:427–437MathSciNetCrossRefGoogle Scholar
  7. Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location problems. Eur J Oper Res 232:256–265MathSciNetCrossRefGoogle Scholar
  8. Chao I-M (2002) A tabu search method for the truck and trailer routing problem. Comput Oper Res 29:33–51CrossRefGoogle Scholar
  9. Cooper L (1963) Location-allocation problems. Oper Res 11:331–343MathSciNetCrossRefGoogle Scholar
  10. Daskin MS (2013) Network and discrete location: models, algorithms and applications, 2nd edn. Wiley, HobokenzbMATHGoogle Scholar
  11. Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, New YorkGoogle Scholar
  12. Drezner Z, Hamacher H (eds) (2002) Facility location: applications and theory. Springer, BerlinzbMATHGoogle Scholar
  13. Drezner Z, Salhi S (2017) Incorporating neighborhood reduction for the solution of the planar p-median problem. Ann Oper Res 258:639–654MathSciNetCrossRefGoogle Scholar
  14. Drezner Z, Brimberg J, Mladenović N, Salhi S (2014) New heuristic algorithms for solving the planar p-median problem. Comput Oper Res 62:296–304MathSciNetCrossRefGoogle Scholar
  15. Drezner Z, Brimberg J, Mladenović N, Salhi S (2015) Solving the planar p-median problem by variable neighborhood and concentric searches. J Global Optim 63:501–514MathSciNetCrossRefGoogle Scholar
  16. Eiselt HA, Marianov V (eds) (2011) Foundations of location analysis. Springer, New YorkzbMATHGoogle Scholar
  17. Fischer K (2011) Central places: the theories of von Thünen, Christaller, and Lösch. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 471–505CrossRefGoogle Scholar
  18. Gollowitzer S, Ljubić I (2011) MIP models for connected facility location: a theoretical and computational study. Comput Oper Res 38:435–449MathSciNetCrossRefGoogle Scholar
  19. Goodman JE, O’Rourke J, Tóth CD (eds) (2017) Handbook of discrete and computational geometry, 3rd edn. CRC Press, Boca RatonzbMATHGoogle Scholar
  20. Görner S, Kanzow C. (2016) On Newton’s method for the fermat-weber location problem. J Optim Theory Appl 170:107–118MathSciNetCrossRefGoogle Scholar
  21. Hale TS, Moberg CR (2003) Location science research: a review. Ann Oper Res 123:21–35MathSciNetCrossRefGoogle Scholar
  22. Hakimi SL (1964) Optimal location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459CrossRefGoogle Scholar
  23. Hakimi SL (1965) Optimal distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13:462–475CrossRefGoogle Scholar
  24. Heinen F (1834) Über Systeme von Kräften, deren Intensitäten sich wie die n. Potenzen der Entfernungen gegebener Punkte von einem Central-Punkte verhalten, in Beziehung auf Punkte, für welche die Summe der n. Entfernungs-Potenzen ein Maximum oder Minimum ist. Bädeker, EssenGoogle Scholar
  25. Launhardt C-F (1900) The principles of location: the theory of the trace. Part I: the commercial trace (Bewley A, Trans., 1900). Lawrence Asylum Press, MadrasGoogle Scholar
  26. Lösch A (1944) The economics of location (Woglom WH, Trans., 1954). Yale University Press, New HavenGoogle Scholar
  27. Manne AS (1964) Plant location under economies of scale-decentralization and computation. Manag. Sci 11:213–235CrossRefGoogle Scholar
  28. Melo MT, Nickel S, Saldanha da Gama F (2006) Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput Oper Res 33:181–208CrossRefGoogle Scholar
  29. Mielhe W (1958) Link-length minimization in networks. Oper Res 6:232–243MathSciNetCrossRefGoogle Scholar
  30. Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New YorkzbMATHGoogle Scholar
  31. Nam NM (2013) The Fermat-Torricelli problem in the light of convex analysis. In: ArXiv e-prints. Provided by the SAO/NASA Astrophysics Data System.
  32. Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin-HeidelbergzbMATHGoogle Scholar
  33. Nickel S, Schöbel A, Sonneborn T (2001) Hub location problems in urban traffic networks. In: Niittymaki J, Pursula M (eds) Mathematical methods and optimization in transportation systems. Kluwer Academic Publishers, Dordrecht, pp 1–12zbMATHGoogle Scholar
  34. Okabe A, Suzuki A (1997) Locational optimization problems solved through Voronoi diagrams. Eur J Oper Res 98:445–456CrossRefGoogle Scholar
  35. Pinto JV (1977) Launhardt and location theory: rediscovery of a neglected book. J Reg Sci 17:17–29CrossRefGoogle Scholar
  36. Plastria F (2011) The Weiszfeld algorithm: proof, amendments, and extensions. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 357–389CrossRefGoogle Scholar
  37. ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. Eur J Oper Res 165:1–19MathSciNetCrossRefGoogle Scholar
  38. ReVelle CS, Laporte G (1996) The plant location problem: new models and research prospects. Oper Res 44:864–874CrossRefGoogle Scholar
  39. ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2:30–42CrossRefGoogle Scholar
  40. ReVelle CS, Eiselt HA, Daskin MS (2008) A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res 184:817–848MathSciNetCrossRefGoogle Scholar
  41. Smith HK, Laporte G, Harper PR (2009) Locational analysis: highlights of growth to maturity. J Oper Res Soc 60:S140–S148CrossRefGoogle Scholar
  42. Toregas C, Swain R, ReVelle CS, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373CrossRefGoogle Scholar
  43. von Thünen JH (1842) The isolated state (Wartenberg CM, Trans., 1966). Pergamon Press, OxfordGoogle Scholar
  44. Weber A (1909) Theory of the location of industries (Friedrich CJ, Trans., 1929). University of Chicago Press, ChicagoGoogle Scholar
  45. Weiszfeld EV (1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J 43:335–386zbMATHGoogle Scholar
  46. Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gilbert Laporte
    • 1
  • Stefan Nickel
    • 2
  • Francisco Saldanha-da-Gama
    • 3
    Email author
  1. 1.Canada Research Chain in Distribution ManagementInteruniversity Research Centre on Enterprise Networks, Logistics, and Transportation (CIRRELT), HEC MontréalMontréalCanada
  2. 2.Institute for Operations Research and Research Center for Information Technology (FZI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Departamento de Estatística e Investigação Operacional, Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations