Design of Modified Code Word for Space Time Block Coded Spatial Modulation

  • R. Raja KumarEmail author
  • R. Pandian
  • B. Kiruthiga
  • P. Indumathi
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


The Multiple Input Multiple output transmission scheme is effective technique to enhance the spectral potency of wireless communication system. MIMO transmission methods include space–time block coding (STBC) and spatial multiplexing. Hereinto, STBC aims at increasing the bit error rate (BER) performance whereas, the spatial multiplexing is meant to reinforce the spectral potency. Space-time block coded spatial modulation (STBC–SM) has been introduced to use the benefits of each spatial modulation and coordinate system block codes. To enhance the system performance, code words are introduced. The modified code word introduces a thought of versatile coefficients into the Modulation of STBC-SM. A technique is planned to get the best versatile coefficients. Moreover, the primary modified code words may be applied to the systems developed from the STBC-SM. Then, STBC-SM system is combined with CDMA technology so as to makes the system capable of serving high number of users by assigning every user with its distinctive PN code.


MIMO BER STBC STBC-SM Code words PN code 


  1. 1.
    Basar, E., Aygolu, U., Panayirci, E., Poor, H.V.: Space-time block coded spatial modulation. IEEE Trans. Commun. 59, 823–832 (2011)CrossRefGoogle Scholar
  2. 2.
    Liang, X.-B.: Orthogonal designs with maximal rates. IEEE Trans. Inf. Theory 49, 2468–2503 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jafarkhani, H., Seshadri, N.: Super-orthogonal space–time trellis codes. IEEE Trans. Inf. Theory 49, 937–950 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jeganathan, J., Ghrayeb, A., Szczecinski, L.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12, 545–547 (2008)CrossRefGoogle Scholar
  5. 5.
    Sterian, C.E.D., et al.: Super-orthogonal space-time codes with rectangular constellations and two transmit antennas for high data rate wireless communications. IEEE Trans. Wirel. Commun. 5, 1857–1865 (2006)CrossRefGoogle Scholar
  6. 6.
    Li, X., Wang, L.: High rate space-time block coded spatial modulation with cyclic structure. IEEE Commun. Lett. 18, 532–535 (2014)CrossRefGoogle Scholar
  7. 7.
    Hua, Y., Zhao, G., Zhao, W., Jin, M.: Modified codewords design for space–time block coded spatial modulation. IET Commun. (2016)Google Scholar
  8. 8.
    Vasanth Raj, P.T., Vishvaksenan, K.S., Dinesh, V., Elaveni, M.: System analysis of STBC-CDMA technique for secured image transmission using watermarking algorithm. In: International Conference on Communication and Signal Processing, 6–8 April 2017Google Scholar
  9. 9.
    Adithya, B.: Adaptive selection of antennas for optimum transmission using STBC. Int. J. Sci. Res. (IJSR) 5, 736–742 (2016). Index Copernicus Value (2013): 6.14Google Scholar
  10. 10.
    Luong, V.-T., Le, M.-T., Mai, H.-A., Tran, X.-N., Ngo, V.-D.: New upper bound for space-time block coded spatial modulation. In: 2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC) Fundamentals and PHY (2015)Google Scholar
  11. 11.
    Auffray, J.M., Helard, J.F.: Performance of multicarrier CDMA technique combined with space-time block coding over Rayleigh channel. In: IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, vol. 2, pp. 348-352 (2002)Google Scholar
  12. 12.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block coding for wireless communications: performance results. IEEE J. Sel. Areas Commun. 17, 451–460 (1999)CrossRefGoogle Scholar
  13. 13.
    Maaref, A., Aïssa, S.: Capacity of space-time block codes in MIMO Rayleigh fading channels with adaptive transmission and estimation errors. IEEE Trans. Wirel. Commun. 4, 2568–2578 (2005)CrossRefGoogle Scholar
  14. 14.
    Andersen, J.B.: Array gain and capacity for known random channels with multiple element arrays at both ends. IEEE J. Sel. Areas Commun. 18(11), 2172–2178 (2000)CrossRefGoogle Scholar
  15. 15.
    Clerckx, B., Oestges, C.: MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems, pp. 7–9. Academic Press, Oxford (2013)CrossRefGoogle Scholar
  16. 16.
    Brennan, D.G.: Linear diversity combining techniques. Proc. IEEE 91, 331–356 (2003)CrossRefGoogle Scholar
  17. 17.
    Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16, 1451–1458 (1998)CrossRefGoogle Scholar
  18. 18.
    Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Tse, D.N.C., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  20. 20.
    Foschini, G.J., Gans, M.J.: On limits of wireless communications in fading environments when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)CrossRefGoogle Scholar
  21. 21.
    Jadhav, S.P., Hendre, V.S.: Performance of maximum ratio combining (MRC) MIMO systems for Rayleigh fading channels. Int. J. Sci. Res. Publ. 3, 2250–3153 (2013)Google Scholar
  22. 22.
    Mesleh, R.Y.: Spatial modulation. IEEE Trans. Veh. Technol. 57 (2008)CrossRefGoogle Scholar
  23. 23.
    Mesleh, R., Haas, H., Ahn, C.W., Yun, S.: Spatial modulation–a new low complexity spectral efficiency enhancing technique. In: Proceedings of Conference on Communications and Networking in China, Beijing, China, pp. 1–5 (2006)Google Scholar
  24. 24.
    Sumathi, A., Mohideen, S.K., Anitha, A.: Performance analysis of space time block coded spatial modulation. In: Software Engineering and Mobile Application Modelling and Development (ICSEMA 2012), International Conference on Digital Object Identifier, pp. 1–7 (2012).
  25. 25.
    Kohno, R., Meidan, R., Milstein, L.: Spread spectrum access methods for wireless communications. IEEE Commun. Mag. 33, 58–67 (1995)CrossRefGoogle Scholar
  26. 26.
    Viterbi, J.: CDMA: Principles of Spread-Spectrum Communication. Addison Wesley Wireless Communication (1995)Google Scholar
  27. 27.
    Pickholtz, R.L., Schilling, D.L., Milstein, L.B.: Theory of spread-spectrum communications—a tutorial. IEEE Trans. Commun. 30, 855–884 (1982)CrossRefGoogle Scholar
  28. 28.
  29. 29.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Raja Kumar
    • 1
    Email author
  • R. Pandian
    • 2
  • B. Kiruthiga
    • 3
  • P. Indumathi
    • 3
  1. 1.Mathematics DepartmentSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Electronics and InstrumentationSathyabama Institute of Science and TechnologyChennaiIndia
  3. 3.Department of Electronics EngineeringMadras Institute of TechnologyChennaiIndia

Personalised recommendations