Femto Cells for Improving the Performance of Indoor Users in LTE-A Heterogeneous Network

  • M. Messiah JosephineEmail author
  • A. Ameelia Roseline
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


LTE-A (Long Term Evolution Advanced) as a transition from the GSM (global system for mobile) to LTE-A. Where LTE-A provides higher bandwidth than GSM and its compatibility to the modern mobile communication system. The objective of the paper is to examine the importance of the femto cell component of the existing LTE-A technology with the current femto cellular technology by adding a femto cell that gives us better signal strength in the indoor environment. It has become a common approach in the current cellular networks to improve capacity and coverage. As a result there is a continued demand for capacity in ultra dense areas, thus by increased coverage it has gained the importance in small cell research to minimize the impact of the living world. Femto cells for improving the performance of indoor users in LTE-A heterogeneous network provides an overall description of LTE-A technology during the exploit of femto cells to improve the indoor signal strength.


LTE-A MIMO FEMTO CELLS Heterogeneous networks Base station RF receiver first section 


  1. 1.
    Acakpovi, A., Sewordor, H.: Performance analysis of femtocell in an indoor cellular network. IRACST – Int. J. Comput. Netw. Wirel. Commun. (IJCNWC) 3(3), 281–286 (2013). ISSN 2250-3501Google Scholar
  2. 2.
    Hanchate, S.M., Borsune, S., Shahapure, S.: 3GPP prons and cons. Int. J. Eng. Sci. Adv. Technol. (IJESAT) 2(6), 1596–1602 (2015)Google Scholar
  3. 3.
    Mishra, S., Murthy, C.S.R.: Increasing energy efficiency via transmit power spreading in dense femto cell networks. IEEE Syst. J. 12(1), 971–980 (2018)CrossRefGoogle Scholar
  4. 4.
    Ismail, I., Zaini, R.E.: Femtocell: a survey on development in LTE-A network. ITMAR 1, 134–146 (2014)Google Scholar
  5. 5.
    Mudau, N., Shongwe, T., Paul, B.S.: Analysis of femtocell for better reliability and high throughput, 05 September 2016Google Scholar
  6. 6.
    Kumar, B., Prasad, G., Kumar, M.: LTE-A-Advanced communi- cation using in Femtocells Perspective. Int. J. Eng. Comput. Sci. 4(8) (2015). ISSN: 2319-7242Google Scholar
  7. 7.
    Lim, K., Lee, S., Lee, Y., Moon, B., Shin, H., Kang, K., Kim, S., Lee, J., Lee, H., Shim, H., Sung, C., Park, K., Lee, G., Kim, M., Park, S., Jung, H., Lim, Y., Song, C., Seong, J., Cho, H., Choi, J., Lee, J., Han, S.: A 65-nm CMOS 2 × 2 MIMO multi-band LTE-ARF transceiver for small cell base stations. IEEE J. Solid-State Circ. 53(7) (2018)Google Scholar
  8. 8.
    Lai, I.-W., Wang, J.-M., Shih, J.-W., Chiueh, T.-D.: Adaptive MIMO detector using reduced search space and its error rate estimator in ultra dense network. IEEE Access 7, 6774–6781 (2018)CrossRefGoogle Scholar
  9. 9.
    Lee, C., Kim, J.: Parallel measurement method of systeminformation for 3GPP LTE-A femtocell (2011)Google Scholar
  10. 10.
    Terayana, T., Ohyane, H., Sato, G., Takimoto, T.: Femto technologies for providing new services at home (2011)Google Scholar
  11. 11.
    Wang, L., Zhang, Y., Wei, Z.: Mobility management schemes at radio network layer for LTE-A femtocells. In: Proceedings of VTC, Barcelona, Spain, pp. 1–5 (2011)Google Scholar
  12. 12.
    Hoydis, J., Debbah, M.: Green, cost-effective, flexible, small cell networks. IEEE Commun. Soc. MMTC 5(5), 23–26 (2010)Google Scholar
  13. 13.
    Leem, H., Baek, S.Y., Sung, D.K.: The effects of cell size on energy saving, system capacity, and per-energy capacity. In: Proceedings of IEEE Wireless Communication and Networking Conference, pp. 1–6, April 2010Google Scholar
  14. 14.
    Wang, B., Kong, Q., Liu, W., Yang, L.: On efficient utilization of green energy in heterogeneous cellular networks. IEEE Syst. J. PP(99), 1–12 (2015)CrossRefGoogle Scholar
  15. 15.
    Chung, Y.: Energy-saving transmission for green macrocell-small cell systems: a system- level perspective. IEEE Syst. J. PP(99), 1–11 (2015)Google Scholar
  16. 16.
    Chai, X., Zhang, Z., Long, K.: Joint spectrum-sharing and base station sleep model for improving energy efficiency of heterogeneous networks. IEEE Syst. J. PP(99), 1–11 (2015)Google Scholar
  17. 17.
    Kim, J., Jeon, W.S., Jeong, D.G.: Base station sleep management in open access femtocell networks. IEEE Trans. Veh. Technol. 65(5), 3786–3791 (2015)CrossRefGoogle Scholar
  18. 18.
    Mao, T., Feng, G., Liang, L., Qin, S., Wu, B.: Distributed energy efficient power control for macro-femto networks. IEEE Trans. Veh. Technol. 65(2), 718–731 (2015)CrossRefGoogle Scholar
  19. 19.
    Li, A., Liao, X., Gao, Z., Yang, Y.: A distributed energy-efficient algorithm for resource allocation in downlink femtocell networks. In: Proceedings of IEEE International Symposium Personal, Indoor, and Mobile Radio Communication, pp. 1169–1174, September 2014Google Scholar
  20. 20.
    Ren, Z., Chen, S., Hu, B., Ma, W.: Energy-efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints. IEEE Trans. Veh. Technol. 63(5), 2139–2150 (2014)CrossRefGoogle Scholar
  21. 21.
    Li, G., et al.: Energy-efficient wireless communications: tutorial, survey, and open is- sues. IEEE Wirel. Commun. 18(6), 28–35 (2011)CrossRefGoogle Scholar
  22. 22.
    3GPP LTE-A heterogeneous network, prashantpanigrahi, August 2012Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Panimalar Engineering CollegeChennaiIndia

Personalised recommendations