Design of Multiple Input and Multiple Output Antenna for Wi-Max and WLAN Application

  • S. Shirley Helen JudithEmail author
  • A. Ameelia Roseline
  • S. Hemajothi
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


In this design, four port MIMO antenna of annular slot is proposed to get better gain and diversity performance of the frequency range from 2 to 6 GHZ for Wi-Max (3.5 GHZ) and WLAN (5 GHZ) application. To get the pattern diversity, the four micro strip feed lines are used and it is isolated by four shorts to maintain isolation. The Micro strip patch antenna are used because of the advantages like low structure in profile, cost of the fabrication is low and support both the circular and the linear polarizations. The antenna performance are analysed by the simulation results which produces the gain, directivity, return loss and radiated power. The antenna proposed used in WLAN and Wi-Max application. The antenna dimensions are thickness 0.8 mm, length 30 mm, width 38 mm. The Flame Retardant (FR4) substrate is used which has the relative permittivity value 4.3. The antenna design proposed is simulated using the Advanced Design System (ADS) software and output is tested using the network analyzer.


Microstrip antenna Wi-Fi WLAN FR-4 Fabrication Gain Return loss 


  1. 1.
    Khaleghi, A., Kamyab, M.: Reconfigurable single port antenna with circular polarization diversity. IEEE Trans. Antennas Propag. 57(2), 555–559 (2009)CrossRefGoogle Scholar
  2. 2.
    Huang, Y., Nehorai, A., Friedman, G.: Mutual coupling of two collocated orthogonally oriented circular thin-wire loops. IEEE Trans. Antennas Propag. 51(6), 1307–1314 (2003)CrossRefGoogle Scholar
  3. 3.
    Ding, Y., Du, Z., Gong, K., Feng, Z.: A novel dual-band printed diversity antenna for mobile terminals. IEEE Trans. Antennas Propag. 55(7), 2088–2096 (2007)CrossRefGoogle Scholar
  4. 4.
    Bod, M., Hassani, H.R., Taheri, M.S.: Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands. IEEE Antennas Wirel. Propag. Lett. 11, 531–534 (2012)CrossRefGoogle Scholar
  5. 5.
    Ghorban, K., Waterhouse, R.B.: Dual polarized wide band apertures tacked patch antennas. IEEE Trans. Antennas Propag. 52(8), 2171–2175 (2004)CrossRefGoogle Scholar
  6. 6.
    Yang, S.-L.S., Luk, K.-M., Lai, H.-W., Kishk, A.-A., Lee, K.-F.: A dual-polarized antenna with pattern diversity. IEEE Antennas Propag. Mag. 50(6), 71–79 (2008)CrossRefGoogle Scholar
  7. 7.
    Toh, W., Chen, Z., Ping, T.: A planar UWB diversity antenna. IEEE Trans. Antennas Propag. 57(11), 3467–3473 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Feng, Z., Luk, K.-M.: Pattern and polarization diversity antenna with high isolation for portable wireless devices. IEEE Antennas Wirel. Propag. Lett. 8, 209–211 (2009)CrossRefGoogle Scholar
  9. 9.
    Chiang, M.J., Wang, S., Hsu, C.C.: Compact multi frequency slot antenna design incorporating embedded arc-strip. IEEE Antennas Wirel. Propag. Lett. 11, 834–837 (2012)CrossRefGoogle Scholar
  10. 10.
    Dang, L., Lei, Z.Y., Xie, Y.J., Ning, G.L., Fan, J.: A compact micro strip slot triple-band antenna for WLAN/WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 9, 1178–1181 (2010)CrossRefGoogle Scholar
  11. 11.
    Haghparast, A.H., Dadashzadeh, G.: A dual band polygon shaped CPW-fed planar monopole antenna with circular polarization and isolation enhancement for MIMO applications. In: IEEE 2015 9th European Conference on Antennas and Propagation (EUCAP), pp. 2164–3342 (2015)Google Scholar
  12. 12.
    Votis, C., Tatsis, G., Kostarakis, P.: Envelope correlation parameter measurements in a MIMO antenna array configuration. J. Commun. Netw. Syst. Sci. 3, 350–354 (2010)Google Scholar
  13. 13.
    Wong, K.L., Lu, J.Y.: 3.6-GHz 10-antenna array for MIMO operation in the smartphone. Microw. Opt. Technol. Lett. 57(7), 1699–1704 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wong, K.L., et al.: 8-Antenna and 16-Antenna Arrays using the quad-antenna linear array as a building block for the 3.5 GHz LTE MIMO operation in the smartphone. Microw. Opt. Technol. Lett. 58(1), 174–181 (2016)CrossRefGoogle Scholar
  15. 15.
    Wong, K.L., Tsai, C.Y., Lu, J.Y.: Two asymmetrically mirrored gap-coupled loop antenna as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans. Antennas Propag. 65(4), 1765–1778 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Stavrou, E., Litschke, O., Baggen, R., Oikonomopoulos-Zachos, C.: Dual-beam antenna for MIMO WiFi base stations. In: 8th European Conference on Antennas and Propagation, pp. 6–11 (April 2014)Google Scholar
  17. 17.
    Han, W., et al.: A six-port MIMO antenna system with high isolation for 5-GHz WLAN access points. IEEE Antennas Wirel. Propag. Lett. 13, 880–883 (2014)CrossRefGoogle Scholar
  18. 18.
    Sun, J.S., Fang, H.S., Lin, P.Y., Chuang, C.S.: Triple-band MIMO antenna for mobile wireless applications. IEEE Antennas Wirel. Propag. Lett. 15, 500–503 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Shirley Helen Judith
    • 1
    Email author
  • A. Ameelia Roseline
    • 1
  • S. Hemajothi
    • 2
  1. 1.Department of Electronics and Communication EngineeringPanimalar Engineering CollegeChennaiIndia
  2. 2.Department of Electronics and Communication EngineeringPrathyusha Engineering CollegeChennaiIndia

Personalised recommendations