Advertisement

A Broadband LR Loaded Dipole Antenna for Wireless Communication

  • K. KayalvizhiEmail author
  • S. Ramesh
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)

Abstract

This article proposed a reactive loaded dipole antenna for Wireless Communication. A dipole antenna with reactive loads are operated in the range of 10 MHz–600 MHz. The amount of loading circuits and their position, the parameter values are quantified using Genetic Algorithm Optimizer and simulate the proposed design using 3D EM CST Microwave studio tool. The reactive load can enrich the antenna characteristics to produce maximum gain and S11 Parameter and then compare the simulated results of antenna performance for with and without load.

Keywords

Genetic algorithm Dipole antenna Reactive loads 

Notes

Acknowledgment

The authors wish to acknowledge DST-FIST supporting facilities available in the Department of Electronics and Communication Engineering at Valliammai Engineering College, Chennai, Tamil Nadu, India.

References

  1. 1.
    Chang, L., Chen, L.L., Zhang, J.Q., Li, D.: A broadband dipole antenna with parasitic patch loading. IEEE Antennas Wirel. Propag. Lett. 17, 1717–1721 (2018)CrossRefGoogle Scholar
  2. 2.
    Amendola, S., Marrocco, G.: Optimal performance of epidermal antennas for UHF radio frequency identification and sensing. IEEE Trans. Antennas Propag. 65(2), 473–481 (2017)CrossRefGoogle Scholar
  3. 3.
    Amani, N., Jafargholi, A., Pazoki, R.: A broadband VHF/UHF loaded dipole antenna in the human body. IEEE Trans. Antennas Propag. 65(10), 5577–5582 (2017)CrossRefGoogle Scholar
  4. 4.
    Zong, H., Liu, X., Ma, X., Shu Lin, L., Liu, S.L., Fan, S.: Design and analysis of a coupling-fed printed dipole array antenna with high gain and omni directivity. IEEE J. Mag. 5, 26501–26511 (2017)Google Scholar
  5. 5.
    KarimiMehr, M., Agharasouli, A.: A miniaturized non-resonant loaded monopole antenna for HF-VHF band. Int. J. Sci. Eng. Res. 8(4), 1092–1096 (2017)Google Scholar
  6. 6.
    Liu, X.Y., Di, Y.H., Liu, H., Wu, Z.T., Tentzeris, M.M.: A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications. IEEE Antennas Wirel. Propag. Lett. 15, 64–67 (2016)CrossRefGoogle Scholar
  7. 7.
    Grimm, M., Manteuffel, D.: On-body antenna parameters. IEEE Trans. Antennas Propag. 63(12), 5812–5821 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Safin, E., Manteuffel, D.: Manipulation of characteristic wave modes by impedance loading. IEEE Trans. Antennas Propag. 63(4), 1756–1764 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Elghannai, E.A., Raines, B.D., Rojas, R.G.: Multiport reactive loading matching technique for wide band antenna applications using the theory of characteristic modes. IEEE Trans. Antennas Propag. 63(1) 261–268 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yeg, K.: Design, optimization, and realization of a wire antenna with a 25:1Bandwidth ratio for terrestrial communications. Turk. J. Electric. Eng. Comput. Sci. 22, 371–379 (2014)CrossRefGoogle Scholar
  11. 11.
    Booket, M.R., Jafargholi, A., Kamyab, M., Eskandari, H., Veysi, M., Mousavi, S.M.: A compact multi-band printed dipole antenna loaded with single- cell MTM. IET Microwave Antenna Propag. 6(1), 17–23 (2012)CrossRefGoogle Scholar
  12. 12.
    Ding, X., Wang, B.Z., Zheng, G., Li, X.M.: Design and realization of a GA- optimized VHF/UHF antenna with ‘On-body’ matching network. IEEE Antennas Wirel. Propag. Lett. 9, 303–306 (2010)CrossRefGoogle Scholar
  13. 13.
    Werner, P.L., Bayraktar, Z., Rybicki, B., Werner, D.H., Schlager, K.J., Linden, D.: Stub-loaded long-wire monopoles optimized for high gain performance. IEEE Trans. Antennas Propag. 56(3), 639–645 (2008)CrossRefGoogle Scholar
  14. 14.
    Iizuka, H., Hall, P.S.: Left-handed dipole antennas and their implementations. IEEE Trans. Antennas Propag. 55(5), 1246–1253 (2007)CrossRefGoogle Scholar
  15. 15.
    Mattioni, L., Marrocco, G.: Design of a broadband HF antenna for multimode naval communication-Part II: extension on VHF/UHF ranges. IEEE Antennas Wirel. Propag. Lett. 6, 83–85 (2007)CrossRefGoogle Scholar
  16. 16.
    Rogers, S.D., Butler, C.M., Martin, A.Q.: Design and realization of GA- optimized wire monopole and matching network with 20:1 bandwidth. IEEE Trans. Antennas Propag. 51(3), 493–502 (2003)CrossRefGoogle Scholar
  17. 17.
    Wong, K.-L.: Planar Antennas for Wireless Communications. Wiley (2003)Google Scholar
  18. 18.
    Ladbury, J.M., Camell, D.G.: Electrically short dipoles with a nonlinear load, a revisited analysis. IEEE Trans. Electromagn. Compat. Mag. 44(1), 38–44 (2002)CrossRefGoogle Scholar
  19. 19.
    Kraus, J.D., Marhefka, R.J.: Antennas: For All Applications. McGraw-Hill (2002)Google Scholar
  20. 20.
    Sarabandi, K., Azaddcgan, R.: Design of an efficient miniaturized UHF planar antenna. In: IEEE International Symposium on Antenna and Propagation Society, vol. 4, pp. 446–449 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSRM Valliammai Engineering CollegeChennaiIndia

Personalised recommendations