Advertisement

Simple Task Implementation of Swarm Robotics in Underwater

  • K. VengatesanEmail author
  • Abhishek Kumar
  • Vaibhav Tarachand Chavan
  • Saiprasad Macchindra Wani
  • Achintya Singhal
  • Samee Sayyad
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)

Abstract

The need to control of underwater swarm robots something other than a controller system, it wants a correspondences method. Subsurface correspondences are troublesome under the most favorable circumstances thus extensive period postponements and negligible data is a worry. The regulator arrangement must have the capacity to deal with negligible and obsolete data. The control system should likewise have the capacity to control an extensive number of machine deprived of an ace switch, a dispersed switch method. This work portrays a control technique; this will provide accurate result of better co-ordination.

Keywords

Robotics Underwater Swarm 

References

  1. 1.
    Tan, Y.: Swarm robotics: collective behavior inspired by nature. J. Comput. Sci. Syst. Biol. 6, e106 (2013).  https://doi.org/10.4172/jcsb.1000e106CrossRefGoogle Scholar
  2. 2.
    Sharkey, A.J.C.: Swarm robotics and minimalism. Connection Science. 19(3), 245–260 (2007)CrossRefGoogle Scholar
  3. 3.
    William, A.: Modeling artificial, mobile swarm systems. Doctoral Thesis. Institute of Technology, California (2003)Google Scholar
  4. 4.
    Beni, G., Wang, J.: Swarm intelligence in cellular robotic. In: Systems Proceedings of NATO Advanced Workshop on Robots and Biological Systems, vol. 102 (1989)Google Scholar
  5. 5.
    Naik, B., Mahapatra, S., Swetanisha, S., Barisal, S.K.: Cooperative swarm based evolutionary approach to find optimal cluster centroids in cluster analysis. IJCSI Int. J. Comput. Sci. Issues. 9, 425 (2012)Google Scholar
  6. 6.
    Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia. 2(9) (2007)CrossRefGoogle Scholar
  7. 7.
    Eliseo, F.: A control architecture for a heterogeneous swarm of robots. Rapport d’avancement de recherché (PhD), Universite Libre De Bruxelles; Computers and Decision Engineering, IRIDIA (2009)Google Scholar
  8. 8.
    Kumar, E.S., Vengatesan, K.: Cluster Comput. (2018).  https://doi.org/10.1007/s10586-018-2362-1CrossRefGoogle Scholar
  9. 9.
    Sanjeevikumar, P., Vengatesan, K., Singh, R.P., Mahajan, S.B.: Statistical analysis of gene expression data using biclustering coherent column. Int. J. Pure Appl. Math. 114(9), 447–454 (2017)Google Scholar
  10. 10.
    Kumar, A., Singhal, A., Sheetlani, J.: Essential-replica for face detection in the large appearance variations. Int. J. Pure Appl. Math. 118(20), 2665–2674 (2018)Google Scholar
  11. 11.
    Parpinelli, R., Heitor, S.L.: Theory and New Applications of Swarm Intelligence. InTech, Rijeka (2012). ISBN 978-953-51-0364-6CrossRefGoogle Scholar
  12. 12.
    Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A. N.: Artificial fish swarm algorithm: a survey of the state of the-art, hybridization, combinatorial and indicative applications. Artif. Rev. (2012).  https://doi.org/10.1007/s10462-012-9342-2CrossRefGoogle Scholar
  13. 13.
    Kumar, A., Vengatesan, K., Rajesh, M., Singhal, A.: Teaching literacy through animation & multimedia. Int. J. Innov. Technol. Explor. Eng. 8(5), 73–76 (2019). 57205678507; 55611316200; 56606891300; 24765540900Google Scholar
  14. 14.
    Zhiguo, S., Jun, T., Qiao, Z., Lei, L., Junming, W.: A survey of swarm robotics system. In: Advances in Swarm Intelligence. Lecture Notes in Computer Science, vol. 7331 (2012)Google Scholar
  15. 15.
    Lau, H.K.: Error detection in swarm robotics: a focus on adaptivity to dynamic environments. Ph.D. Thesis. University of York, Department of Computer Science (2012)Google Scholar
  16. 16.
    Marco, D., et al.: The SWARM-BOT project. In: Swarm Robotics. Lecture Notes in Computer Science, vol. 3342 (2005)Google Scholar
  17. 17.
    Selvaraj Kesavan, E., Kumar, S., Kumar, A., Vengatesan, K.: An investigation on adaptive HTTP media streaming quality-of-experience (QoE) and agility using cloud media services. Int. J. Comput. Appl. (2019).  https://doi.org/10.1080/1206212X.2019.1575034CrossRefGoogle Scholar
  18. 18.
    Marco, D., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robot. 17(2–3), 223–245 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. Vengatesan
    • 1
    Email author
  • Abhishek Kumar
    • 2
  • Vaibhav Tarachand Chavan
    • 1
  • Saiprasad Macchindra Wani
    • 1
  • Achintya Singhal
    • 2
  • Samee Sayyad
    • 3
  1. 1.Department of Computer EngineeringSanjivani College of EngineeringKopargaonIndia
  2. 2.Department of Computer ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.School of EngineeringSymbiosis Skill and Open UniversityPuneIndia

Personalised recommendations