Skip to main content

Demand Side Integration in the Operation of LV Smart Grids

  • Chapter
  • First Online:
Demand Response Application in Smart Grids
  • 426 Accesses

Abstract

The purpose of the chapter is to describe models and methodologies for the integration of the distributed energy resources (DERs) in LV distribution networks, using multi-agent systems (MAS). In the MAS approach, an aggregator is used to coordinate the behaviour of independent agents in order to elaborate strategies so that the total load demand processed (ESSs and active loads) does not cause contingencies in the network (i.e. not exceeding a defined voltage limit). The proposed strategies allow exploiting the potential of energy storages, supporting the grid operation (e.g. absorbing the surplus energy produced by PV and supplying energy during peak periods), reducing substation transformers and line loading. Application examples from real word will be illustrated to highlight the effectiveness of the aggregation of the resources (AD, EVs and ESSs), in providing grid services, supporting the DSO in the operation of the distribution network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission, A Clean Planet for All a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy, 28/11/2018 [Online]. https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf Last access: 8/03/2019

  2. European Commission, Directive of the European Parliament and of the Council on common rules for the internal market in electricity (COM (2016) 864 final), Brussels, 23/2/2017

    Google Scholar 

  3. X. Wang, A. Palazoglu, N.H. El-Farra, Operational optimization and demand response of hybrid renewable energy systems. Appl. Energy 143, 324–335 (2015)

    Article  Google Scholar 

  4. O. Erdinc, N.G. Paterakis, T.D.P. Mendes, A.G. Bakirtzis, J. P. S. Catalão, Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR. IEEE Trans. Smart Grid 6(3), 1281–1291 (2015)

    Article  Google Scholar 

  5. F.S. Gazijahania, J. Salehi, Game theory based profit maximization model for microgrid aggregators with presence of EDRP using information gap decision theory. IEEE Syst. J. 99, 1–9 (2018)

    Google Scholar 

  6. J. Soares, H. Morais, T. Sousa, Z. Vale, P. Faria, Day-ahead resource scheduling including demand response for electric vehicles. IEEE Trans. Smart Grid 4(1), 596–605 (2013)

    Article  Google Scholar 

  7. ADDRESS Project. [Online]. http://www.addressfp7.org/ Last access: 8/03/2019

  8. R.J. Bessa, M.A. Matos, The role of an aggregator agent for EV in the electricity market, in Proceedings of 7th MEDPOWER, Ayia Napa, Cyprus 7–10 November (2010)

    Google Scholar 

  9. F. Samadi Gazijahania, J. Salehi, Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method. Int. J. Electr. Power Energy Syst. 99, 481–492 (2018)

    Article  Google Scholar 

  10. F. Samadi Gazijahania, J. Salehi, Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach. Energy 161, 999–1015 (2018)

    Article  Google Scholar 

  11. H. Yang, T. Xiong, J. Qiu, D. Qiu, Z. Yang Dong, Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl. Energy 167, 353–365 (2016)

    Article  Google Scholar 

  12. A.L. Dimeas, N.D. Hatziargyriou, Operation of a multiagent system for microgrid control. IEEE Trans. Power Systems 20, 1447 (2005)

    Article  Google Scholar 

  13. J.E.L. Karfopoulos, N.D. Hatziargyriou, A multi-agent system for controlled charging of a large population of electric vehicles. IEEE Trans. Power Syst 28(2), 1196–1204 (2012)

    Article  Google Scholar 

  14. L. Gan, U. Topcu, S.H. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940 (2013)

    Article  Google Scholar 

  15. K. Mets, R. D’hulst, C. Develder, Comparison of intelligent charging algorithms for electric vehicles to reduce peak load and demand variability in a distribution grid. J. Commun. Netw. 14(6), 672 (2012)

    Article  Google Scholar 

  16. B. Asare-Bediako, W.L. Kling, P.F. Ribeiro, Multi-agent system architecture for smart home energy management and optimization, in 4th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), October 6–9, Copenhagen (2013)

    Google Scholar 

  17. M. Biabani, M. A. Golkar, A. Sajadi, Operation of a multi-agent system for load management in smart power distribution system, in Proceedings of 11th International Conference on Environment and Electrical Engineering (EEEIC), Venice, 18–25 May (2012)

    Google Scholar 

  18. ENTSO-E, ENTSO-G, “TYNDP 2018 Scenario Report: Main Report”. [Online]. https://docstore.entsoe.eu/Documents/TYNDP%20documents/TYNDP2018/Scenario_Report_2018_Final.pdf Last access: 8/03/2019

  19. StoRES project. [Online]. https://stores.interreg-med.eu/ Last access: 8/03/2019

  20. S.D.J. McArthur et al., Multi-agent systems for power engineering applications—Part I: Concepts, approaches, and technical challenges, IEEE Trans. Power Syst. Vol. 22, No. 4, November 2007 1743-1752

    Article  Google Scholar 

  21. M. Wooldridge, An introduction to MultiAgent system (Wiley, Hoboken, 2002)

    Google Scholar 

  22. M. Nikraz, G. Caire, P.A. Bahri, A Methodology for the Analysis and Design of Multi-Agent Systems Using JADE [Online]. http://jade.tilab.com/doc/tutorials/JADE_methodology_website_version.pdf. Last access: 8/03/2019

  23. JADE Programmer’s Guide. [Online]. http://jade.tilab.com/doc/programmersguide.pdf Last access: 08/03/2019

  24. The FIPA website. [Online]. http://www.fipa.org/ Last access: 08/03/2019

  25. R.C. Dougan, T.E. McDermott, An open source platform for collaborating on smart grid research, in 2011 IEEE, Power and Energy Society General Meeting (2011)

    Google Scholar 

  26. http://sourceforge.net/projects/electricdss. Last access: 8/03/2019

  27. Z. Ma, D. Callaway, I. Hiskens, Decentralised charging control for large population of plug-in electric vehicles, in Proceedings of 49th IEEE CDC Conference, Yokohama, Japan (2010)

    Google Scholar 

  28. S. Mocci, N. Natale, S. Ruggeri, F. Pilo, Multi-agent control system for increasing hosting capacity in active distribution networks with EV, in Proceedings of Energycon IEEE International Energy Conference 2014, Dubrovnik, 13–16 May (2014)

    Google Scholar 

  29. Mathworks website [Online]. https://it.mathworks.com/help/optim/ug/quadprog.html. Last access: 08/03/2019

  30. S. Mocci, N. Natale, F. Pilo, S. Ruggeri, Demand side integration in LV smart grids with multi-agent control system. Electr. Power Syst. Res. 125, 23–33 (2015)

    Article  Google Scholar 

  31. S. Mocci, N. Natale, F. Pilo, S. Ruggeri, Multi-agent control system to coordinate optimal demand response actions in active distribution networks, in Proceedings of MEDPOWER 2014, Athens, 2–5 November (2014)

    Google Scholar 

  32. S. Mocci, N. Natale, F. Pilo, S. Ruggeri, Multi-agent control system to coordinate optimal EV charging and demand response actions in active distribution networks, in Proceedings of 3rd Renewable Power Generation Conference, Naples, 24–25 September (2014)

    Google Scholar 

  33. W. Kempton, J. Tomić, Vehicle to grid power fundamentals: calculating capacity and net revenue. J. Power Sources 144, 268 (2005)

    Article  Google Scholar 

  34. S. Mocci, N. Natale, F. Pilo, S. Ruggeri, Exploiting distributed energy storage to increase network hosting capacity with a multi-agent control system, in 2016 AEIT International Annual Conference (2016)

    Google Scholar 

  35. A. Bracale, R. Caldon, M. Coppo, D. Dal Canto, R. Langella, G. Petretto, F. Pilo, G. Pisano, D. Proto, S. Ruggeri, S. Scalari, R. Turri, Active management of distribution networks with the ATLANTIDE models, in Proceedings of 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion, MEDPOWER 2012, Cagliari, 1–3 October (2012)

    Google Scholar 

  36. A. Bracale, R. Caldon, G. Celli, M. Coppo, D. Dal Canto, R. Langella, G. Petretto, F. Pilo, G. Pisano, D. Proto, S. Scalari, R. Turri, Analysis of the Italian distribution system evolution through reference networks, in Proceedings of IEEE PES Innovative Smart Grid Technologies (ISGT) Europe Conference, Berlin, 14–17 Oct (2012)

    Google Scholar 

  37. S. Mocci, N. Natale, F. Pilo, S. Ruggeri, Multi-agent control system for the exploitation of vehicle to grid in active LV networks, in CIRED Workshop, 14–15 June (2016)

    Google Scholar 

  38. S. Russell, P. Norvig, Artificial intelligence: a modern approach, Prentice Hall, ISBN D-IH-IQBSOS-E (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ruggeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mocci, S., Ruggeri, S. (2020). Demand Side Integration in the Operation of LV Smart Grids. In: Nojavan, S., Zare, K. (eds) Demand Response Application in Smart Grids. Springer, Cham. https://doi.org/10.1007/978-3-030-32104-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32104-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32103-1

  • Online ISBN: 978-3-030-32104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics