Advertisement

Fast Authentication from Aggregate Signatures with Improved Security

  • Muslum Ozgur OzmenEmail author
  • Rouzbeh Behnia
  • Attila A. Yavuz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

An attempt to derive signer-efficient digital signatures from aggregate signatures was made in a signature scheme referred to as Structure-free Compact Rapid Authentication (SCRA) (IEEE TIFS 2017). In this paper, we first mount a practical universal forgery attack against the NTRU instantiation of SCRA by observing only 8161 signatures. Second, we propose a new signature scheme (\(\texttt {FAAS}\)), which transforms any single-signer aggregate signature scheme into a signer-efficient scheme. We show two efficient instantiations of \(\texttt {FAAS}\), namely, \(\texttt {FAAS}\hbox {-}{} \texttt {NTRU}\) and \(\texttt {FAAS}\hbox {-}{} \texttt {RSA}\), both of which achieve high computational efficiency. Our experiments confirmed that \(\texttt {FAAS}\) schemes achieve up to 100\(\times \) faster signature generation compared to their underlying schemes. Moreover, \(\texttt {FAAS}\) schemes eliminate some of the costly operations such as Gaussian sampling, rejection sampling, and exponentiation at the signature generation that are shown to be susceptible to side-channel attacks. This enables \(\texttt {FAAS}\) schemes to enhance the security and efficiency of their underlying schemes. Finally, we prove that \(\texttt {FAAS}\) schemes are secure (in random oracle model), and open-source both our attack and \(\texttt {FAAS}\) implementations for public testing purposes.

Keywords

Authentication Digital signatures Universal forgery NTRU-based signatures 

Notes

Acknowledgments

We would like to thank Zhenfei Zhang and the anonymous reviewers for their insightful comments and suggestions. This work is supported by the Department of Energy Award DE-OE0000780 and NSF Award #1652389.

Supplementary material

References

  1. 1.
    IEEE guide for wireless access in vehicular environments (wave) - architecture. IEEE Std 1609.0-2013, pp. 1–78, March 2014Google Scholar
  2. 2.
  3. 3.
    The cyber resilient energy delivery consortium (CREDC) (2018). https://cred-c.org/
  4. 4.
    Post-quantum cryptography standardization conference (2018). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
  5. 5.
    American Bankers Association: ANSI X9.62-1998: Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) (1999)Google Scholar
  6. 6.
    Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal blake. Submission to NIST (Round 3) (2010). http://131002.net/blake/blake.pdf
  7. 7.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054130CrossRefGoogle Scholar
  8. 8.
    Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_15CrossRefGoogle Scholar
  9. 9.
    Bernstein, D., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_26CrossRefGoogle Scholar
  11. 11.
    Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1006–1018. ACM, New York (2016).  https://doi.org/10.1145/2976749.2978425
  12. 12.
    Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_1CrossRefGoogle Scholar
  13. 13.
    Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45664-3_24CrossRefGoogle Scholar
  14. 14.
    Coron, J.-S., Naccache, D.: Boneh et al.’s k-element aggregate extraction assumption is equivalent to the diffie-hellman assumption. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_25CrossRefGoogle Scholar
  15. 15.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  16. 16.
    Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: Crystals - dilithium: digital signatures from module lattices. Cryptology ePrint Archive, Report 2017/633 (2017). https://eprint.iacr.org/2017/633
  17. 17.
    El Bansarkhani, R., Buchmann, J.: Towards lattice based aggregate signatures. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 336–355. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_21CrossRefGoogle Scholar
  18. 18.
    Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS lattice-based signatures: exploiting branch tracing against strongswan and electromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1857–1874 (2017)Google Scholar
  19. 19.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_24CrossRefGoogle Scholar
  20. 20.
    Genkin, D., Valenta, L., Yarom, Y.: May the fourth be with you: a microarchitectural side channel attack on several real-world applications of curve25519. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 845–858. ACM, New York (2017).  https://doi.org/10.1145/3133956.3134029
  21. 21.
    Granlund, T.: GNU multiple precision arithmetic library 6.1.2. https://gmplib.org/
  22. 22.
    Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload – a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_16CrossRefzbMATHGoogle Scholar
  23. 23.
    Gungor, V.C., et al.: Smart grid technologies: communication technologies and standards. IEEE Trans. Industr. Inf. 7(4), 529–539 (2011)CrossRefGoogle Scholar
  24. 24.
    Harding, J., et al.: Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application. U.S, Department of Transportation National Highway Traffic Safety Administration (NHTSA), August 2014Google Scholar
  25. 25.
    Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: A signature scheme from learning with truncation. Cryptology ePrint Archive, Report 2017/995 (2017). https://eprint.iacr.org/2017/995
  26. 26.
    Kalach, K., Safavi-Naini, R.: An efficient post-quantum one-time signature scheme. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 331–351. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31301-6_20CrossRefGoogle Scholar
  27. 27.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/CRC Cryptography and Network Security Series). Chapman & Hall/CRC (2007)Google Scholar
  28. 28.
    Kelly, J.: A preview of bristlecone, Google’s new quantum processor (2018). https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
  29. 29.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  30. 30.
    Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage (TOS) 5(1), 1–21 (2009)CrossRefGoogle Scholar
  31. 31.
    Mykletun, E., Narasimha, M., Tsudik, G.: Signature bouquets: immutability for aggregated/condensed signatures. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 160–176. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30108-0_10CrossRefGoogle Scholar
  32. 32.
    Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model. In: Damiani, E., Liu, P. (eds.) DBSec 2006. LNCS, vol. 4127, pp. 89–103. Springer, Heidelberg (2006).  https://doi.org/10.1007/11805588_7CrossRefGoogle Scholar
  33. 33.
    Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?—complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, pp. 77–85. Springer, Heidelberg.  https://doi.org/10.1007/BFb0053426CrossRefGoogle Scholar
  34. 34.
    Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ozmen, M.O., Behnia, R., Yavuz, A.A.: Fast authentication from aggregate signatures with improved security. Cryptology ePrint Archive, Report 2018/1141 (2018). https://eprint.iacr.org/2018/1141
  36. 36.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Schindler, W.: Exclusive exponent blinding may not suffice to prevent timing attacks on RSA. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 229–247. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48324-4_12CrossRefGoogle Scholar
  38. 38.
    Seo, S.H., Won, J., Bertino, E., Kang, Y., Choi, D.: A security framework for a drone delivery service. In: Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, DroNet 2016, pp. 29–34. ACM (2016)Google Scholar
  39. 39.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_21CrossRefGoogle Scholar
  40. 40.
    Shamus: Multiprecision integer and rational arithmetic C/C++ library (MIRACL). https://github.com/miracl/MIRACL. Accessed 30 Jan 2018
  41. 41.
    Song, W., Wang, B., Wang, Q., Peng, Z., Lou, W.: Tell me the truth: practically public authentication for outsourced databases with multi-user modification. Inf. Sci. 387, 221–237 (2017)CrossRefGoogle Scholar
  42. 42.
    Tesfay, T., Boudec, J.Y.L.: Experimental comparison of multicast authentication for wide area monitoring systems. IEEE Trans. Smart Grid 9(5), 4394–4404 (2017)CrossRefGoogle Scholar
  43. 43.
    Won, J., Seo, S.H., Bertino, E.: A secure communication protocol for drones and smart objects. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, ASIA CCS 2015, pp. 249–260. ACM (2015)Google Scholar
  44. 44.
    Yavuz, A.A.: An efficient real-time broadcast authentication scheme for command and control messages. IEEE Trans. Inf. Forensics Secur. 9(10), 1733–1742 (2014)CrossRefGoogle Scholar
  45. 45.
    Yavuz, A.A., Mudgerikar, A., Singla, A., Papapanagiotou, I., Bertino, E.: Real-time digital signatures for time-critical networks. IEEE Trans. Inf. Forensics Secur. 12(11), 2627–2639 (2017)CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Muslum Ozgur Ozmen
    • 1
    Email author
  • Rouzbeh Behnia
    • 1
  • Attila A. Yavuz
    • 2
  1. 1.Oregon State UniversityCorvallisUSA
  2. 2.University of South FloridaTampaUSA

Personalised recommendations