Advertisement

VAPOR: A Value-Centric Blockchain that is Scale-out, Decentralized, and Flexible by Design

  • Zhijie Ren
  • Zekeriya ErkinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

Blockchains is a special type of distributed systems that operates in unsafe networks. In most blockchains, all nodes should reach consensus on all state transitions with Byzantine fault tolerant algorithms, which creates bottlenecks in performance. In this paper, we propose a new type of blockchains, namely Value-Centric Blockchains (VCBs), in which the states are specified as values (or more comprehensively, coins) with owners and the state transition records are then specified as proofs of the ownerships of individual values. We then formalize the “rational” assumptions that have been used in most blockchains. We further propose a VCB, VAPOR, that guarantees secure value transfers if all nodes are rational and keep the proofs of the values they owned, which is merely parts of the whole state transition record. As a result, we show that VAPOR enjoys significant benefits in throughput, decentralization, and flexibility without compromising security.

Keywords

Blockchain Distributed ledgers Consensus algorithm Scalability Decentralization 

Supplementary material

References

  1. 1.
  2. 2.
    Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. CoRR abs/1708.03778 (2017). http://arxiv.org/abs/1708.03778
  3. 3.
    Baird, L.: The swirld hashgraph consensus algorithm: fair, fast, byzantine fault tolerance (2016). http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
  4. 4.
    Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptology ePrint Archive 2016, 919 (2016)Google Scholar
  5. 5.
    Buterin, V.: On sharding blockchains. Sharding FAQ (2017). https://github.com/ethereum/wiki/wiki/Sharding-FAQ
  6. 6.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)Google Scholar
  7. 7.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983).  https://doi.org/10.1007/978-1-4757-0602-4_18CrossRefGoogle Scholar
  8. 8.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_25CrossRefGoogle Scholar
  9. 9.
    Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_8CrossRefGoogle Scholar
  10. 10.
    Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 45–59. USENIX Association (2016)Google Scholar
  11. 11.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_28CrossRefGoogle Scholar
  12. 12.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68. ACM (2017)Google Scholar
  13. 13.
    Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 BFT protocols. In: Proceedings of the 5th European conference on Computer systems. pp. 363–376. ACM (2010)Google Scholar
  14. 14.
    Hardin, G.: The tragedy of the commons. J. Nat. Resources Policy Res. 1(3), 243–253 (2009)CrossRefGoogle Scholar
  15. 15.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_12CrossRefGoogle Scholar
  16. 16.
    Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. CoRR abs/1602.06997 (2016). http://arxiv.org/abs/1602.06997
  17. 17.
    Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2017/406.pdf
  18. 18.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 45–58. ACM (2007)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 17–30. ACM, New York (2016).  https://doi.org/10.1145/2976749.2978389
  21. 21.
    Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–42. ACM (2016)Google Scholar
  22. 22.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf
  23. 23.
    Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_27CrossRefGoogle Scholar
  24. 24.
    Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model. IACR Cryptology ePrint Archive (2016). http://eprint.iacr.org/2016/917.pdf
  25. 25.
    Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://plasma.io/plasma.pdf
  26. 26.
    Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments. Technical Report (draft) (2015). https://lightning.network/lightning-network-paper.pdf
  27. 27.
    Popov, S.: The tangle (2014). https://iota.org/IOTA_Whitepaper.pdf
  28. 28.
    Ren, Z., Erkin, Z.: A scale-out blockchain for value transfer with spontaneous sharding. CoRR abs/1801.02531 (2018). http://arxiv.org/abs/1801.02531
  29. 29.
    Sompolinsky, Y., Zohar, A.: Phantom: A scalable blockdag protocol (2018)Google Scholar
  30. 30.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_32CrossRefGoogle Scholar
  31. 31.
    Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39028-4_9CrossRefGoogle Scholar
  32. 32.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151 (2014). http://gavwood.com/paper.pdf

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  1. 1.Department of Intelligent SystemsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations