Advertisement

Bitcoin Security Under Temporary Dishonest Majority

  • Georgia AvarikiotiEmail author
  • Lukas Käppeli
  • Yuyi Wang
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We demand a majority of honest online participants on expectation. We explore three different models and present the requirements for proving Bitcoin’s security in all of them: we first examine a synchronous model, then extend to a bounded delay model and last we consider a synchronous model that allows message losses.

Keywords

Bitcoin Security Dishonest majority Offline players Sleepy model 

Notes

Acknowledgments

We thank Dionysis Zindros for the helpful and productive discussions. Y. W. is partially supported by X-Order Lab.

References

  1. 1.
    Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 375–392 (2017)Google Scholar
  2. 2.
    Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin Security under Temporary Dishonest Majority (2019)Google Scholar
  3. 3.
    Bonneau, J.: Hostile blockchain takeovers (short paper). In: Bitcoin’18: Proceedings of the 5th Workshop on Bitcoin and Blockchain Research (2018)Google Scholar
  4. 4.
    Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: IEEE P2P 2013 Proceedings, September 2013Google Scholar
  5. 5.
    Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 89–103 (2015)Google Scholar
  6. 6.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2013)CrossRefGoogle Scholar
  7. 7.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_10CrossRefGoogle Scholar
  8. 8.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: Proceedings of the 24th USENIX Conference on Security Symposium, SEC 2015, pp. 129–144. USENIX Association, Berkeley (2015)Google Scholar
  9. 9.
    Kwon, Y., Kim, D., Son, Y., Vasserman, E.Y., Kim, Y.: Be selfish and avoid dilemmas: fork after withholding (FAW) attacks on bitcoin. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 195–209 (2017)Google Scholar
  10. 10.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, October 2008. https://bitcoin.org/bitcoin.pdf
  11. 11.
    Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 305–320 (2015)Google Scholar
  12. 12.
    Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_14CrossRefGoogle Scholar
  13. 13.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54970-4_30CrossRefGoogle Scholar
  14. 14.
    Singh, A., Ngan, T.W.J., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay networks: threats and defenses. In: IEEE INFOCOM 2006, April 2006Google Scholar
  15. 15.
    Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash tables. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 261–269. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45748-8_25CrossRefzbMATHGoogle Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Georgia Avarikioti
    • 1
    Email author
  • Lukas Käppeli
    • 1
  • Yuyi Wang
    • 1
  • Roger Wattenhofer
    • 1
  1. 1.ETH ZurichZürichSwitzerland

Personalised recommendations