Advertisement

Oblivious PRF on Committed Vector Inputs and Application to Deduplication of Encrypted Data

  • Jan Camenisch
  • Angelo De Caro
  • Esha GhoshEmail author
  • Alessandro Sorniotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

Ensuring secure deduplication of encrypted data is a very active topic of research because deduplication is effective at reducing storage costs. Schemes supporting deduplication of encrypted data that are not vulnerable to content guessing attacks (such as Message Locked Encryption) have been proposed recently [Bellare et al. 2013, Li et al. 2015]. However in all these schemes, there is a key derivation phase that solely depends on a short hash of the data and not the data itself. Therefore, a file specific key can be obtained by anyone possessing the hash. Since hash values are usually not meant to be secret, a desired solution will be a more robust oblivious key generation protocol where file hashes need not be kept private. Motivated by this use-case, we propose a new primitive for oblivious pseudorandom function (OPRF) on committed vector inputs in the universal composable (UC) framework. We formalize this functionality as \(\mathcal {F}_\mathsf {OOPRF}\), where \(\mathsf {OOPRF}\) stands for Ownership-based Oblivious PRF. \(\mathcal {F}_\mathsf {OOPRF}\) produces a unique random key on input a vector digest provided the client proves knowledge of a (parametrisable) number of random positions of the input vector.

To construct an efficient \(\mathsf {OOPRF}\) protocol, we carefully combine a hiding vector commitment scheme, a variant of the PRF scheme of Dodis-Yampolskiy [Dodis et al. 2005] and a homomorphic encryption scheme glued together with concrete, efficient instantiations of proofs of knowledge. To the best of our knowledge, our work shows for the first time how these primitives can be combined in a secure, efficient and useful way. We also propose a new vector commitment scheme with constant sized public parameters but \((\log n)\) size witnesses where n is the length of the committed vector. This can be of independent interest.

References

  1. 1.
    Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_27CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_4CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report 2018/1188 (2018)Google Scholar
  4. 4.
    Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 42–62. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_3CrossRefGoogle Scholar
  5. 5.
    Bootle, J., Cerulli, A., Chaidos, P., Groth, J.: Efficient zero-knowledge proof systems. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2015-2016. LNCS, vol. 9808, pp. 1–31. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-43005-8_1CrossRefzbMATHGoogle Scholar
  6. 6.
    Camenisch, J., Caro, A.D., Ghosh, E., Sorniotti, A.: Oblivious PRF on committed vector inputs and application to deduplication of encrypted data. IACR Cryptology ePrint Archive 2019 (2019). https://eprint.iacr.org/2019
  7. 7.
    Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol design and applications to revocation and attribute tokens. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 208–239. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_8CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Kiayias, A., Yung, M.: On the portability of Generalized Schnorr Proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_25CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_8CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052252CrossRefGoogle Scholar
  11. 11.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  12. 12.
    Canetti, R.: Universally composable signatures, certification and authentication. Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/2003/239
  13. 13.
    Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_5CrossRefGoogle Scholar
  14. 14.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_34CrossRefGoogle Scholar
  15. 15.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_30CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commitments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_29CrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30580-4_28CrossRefGoogle Scholar
  18. 18.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_17CrossRefGoogle Scholar
  19. 19.
    Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote storage systems. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011, pp. 491–500. ACM Press (2011)Google Scholar
  20. 20.
    Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable password-protected secret sharing (or: How to protect your bitcoin wallet online). In: EuroS&P, pp. 276–291 (2016).  https://doi.org/10.1109/EuroSP.2016.30
  21. 21.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_34CrossRefzbMATHGoogle Scholar
  22. 22.
    Keelveedhi, S., Bellare, M., Ristenpart, T.: Dupless: server-aided encryption for deduplicated storage. In: USENIX Security 2013, pp. 179–194. USENIX (2013). https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bellare
  23. 23.
    Liu, J., Asokan, N., Pinkas, B.: Secure deduplication of encrypted data without additional independent servers. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 874–885. ACM Press (2015)Google Scholar
  24. 24.
    Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. Trans. Storage 7(4), 14:1–14:20 (2012).  https://doi.org/10.1145/2078861.2078864CrossRefGoogle Scholar
  25. 25.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  26. 26.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_7CrossRefGoogle Scholar
  27. 27.
    Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_3CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Jan Camenisch
    • 1
  • Angelo De Caro
    • 2
  • Esha Ghosh
    • 3
    Email author
  • Alessandro Sorniotti
    • 2
  1. 1.DFINITY Zurich Research LabZürichSwitzerland
  2. 2.IBM Research, ZurichRüschlikonSwitzerland
  3. 3.Microsoft ResearchRedmondUSA

Personalised recommendations