Advertisement

Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected \(O(n^2)\) Communication, and Optimal Resilience

  • Ittai Abraham
  • Srinivas Devadas
  • Danny Dolev
  • Kartik Nayak
  • Ling RenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

We present new protocols for Byzantine agreement in the synchronous and authenticated setting, tolerating the optimal number of f faults among \(n=2f+1\) parties. Our protocols achieve an expected O(1) round complexity and an expected \(O(n^2)\) communication complexity. The exact round complexity in expectation is 10 for a static adversary and 16 for a strongly rushing adaptive adversary. For comparison, previous protocols in the same setting require expected 29 rounds.

Notes

Acknowledgments

We thank Dahlia Malkhi and Benjamin Chan for many useful discussions.

References

  1. 1.
    Abraham, I., et al.: Communication complexity of byzantine agreement, revisited. arXiv preprint, arXiv:1805.03391 (2018)
  2. 2.
    Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine agreement with expected \({O}(1)\) rounds, expected \({O}(n^2)\) communication, and optimal resilience. Cryptology ePrint Archive, Report 2018/1028 (2018). https://eprint.iacr.org/2018/1028
  3. 3.
    Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-message BFT devil. arXiv preprint arXiv:1803.05069 (2018)
  4. 4.
    Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: A blockchain protocol based on reconfigurable byzantine consensus. In: OPODIS, Solida (2017)Google Scholar
  5. 5.
    Adya, A., et al.: FARSITE: federated, available, and reliable storage for an incompletely trusted environment. ACM SIGOPS Oper. Syst. Rev. 36(SI), 1–14 (2002)CrossRefGoogle Scholar
  6. 6.
    Ben-Or, M.: Another advantage of free choice (extended abstract): completely asynchronous agreement protocols. In: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)Google Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)Google Scholar
  8. 8.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)Google Scholar
  10. 10.
    Dolev, D., Halpern, J., Simons, B., Strong, R.: Dynamic fault-tolerant clock synchronization. J. ACM 42(1), 143–185 (1995)CrossRefGoogle Scholar
  11. 11.
    Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. J. ACM (JACM) 32(1), 191–204 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 211–220. ACM (2003)Google Scholar
  17. 17.
    Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with an honest majority. In: Proceedings of the 19th Annual ACM STOC, vol. 87, pp. 218–229 (1987)Google Scholar
  18. 18.
    Gueta, G.G., et al.: SBFT: a scalable decentralized trust infrastructure for blockchains. arXiv preprint arXiv:1804.01626 (2018)
  19. 19.
    Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_27CrossRefGoogle Scholar
  20. 20.
    King, V., Saia, J.: Breaking the \(O(n^2)\) bit barrier: scalable Byzantine agreement with an adaptive adversary. J. ACM 58(4), 18 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium, pp. 279–296. USENIX Association (2016)Google Scholar
  22. 22.
    Kubiatowicz, J., et al.: OceanStore: an architecture for global-scale persistent storage. ACM Sigplan Not. 35(11), 190–201 (2000)CrossRefGoogle Scholar
  23. 23.
    Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)CrossRefGoogle Scholar
  24. 24.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefGoogle Scholar
  25. 25.
    Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed non-interactive adaptively-secure threshold signatures with short shares. Theoret. Comput. Sci. 645, 1–24 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, S., Cachin, C., Quéma, V., Vukolic, M.: XFT: practical fault tolerance beyond crashes. In: 12th USENIX Symposium on Operating Systems Design and Implementation, pp. 485–500. USENIX Association (2016)Google Scholar
  27. 27.
    Loss, J., Moran, T.: Combining asynchronous and synchronous Byzantine agreement: the best of both worlds. Cryptology ePrint Archive 2018/235 (2018)Google Scholar
  28. 28.
    Micali, S.: ALGORAND: the efficient and democratic ledger. arXiv:1607.01341 (2016)
  29. 29.
    Pass, R., Shi, E.: Feasibilities and infeasibilities for achieving responsiveness in permissionless consensus. In: International Symposium on Distributed Computing. Springer (2017) Google Scholar
  30. 30.
    Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_1CrossRefGoogle Scholar
  31. 31.
    Rabin, M.O.: Randomized Byzantine generals. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pp. 403–409. IEEE (1983)Google Scholar
  32. 32.
    Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_15CrossRefGoogle Scholar
  33. 33.
    Zhou, L., Schneider, F., van Renesse, R.: COCA: a secure distributed online certification authority. ACM Trans. Comput. Syst. 20(4), 329–368 (2002)CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Srinivas Devadas
    • 2
  • Danny Dolev
    • 3
  • Kartik Nayak
    • 1
    • 4
  • Ling Ren
    • 1
    • 5
    Email author
  1. 1.VMware ResearchPalo AltoUSA
  2. 2.MITCambridgeUSA
  3. 3.Hebrew University of JerusalemJerusalemIsrael
  4. 4.Duke UniversityDurhamUSA
  5. 5.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations