Fully Generic Queries: Open Problems and Some Partial Answers

  • Dimitri Surinx
  • Jan Van den BusscheEmail author
  • Jonni Virtema
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11815)


The class of fully generic queries on complex objects was introduced by Beeri, Milo and Ta-Shma in 1997. Such queries are still relevant as they capture the class of manipulations on nested big data, where output can be generated without a need for looking in detail at, or comparing, the atomic data elements. Unfortunately, the class of fully generic queries is rather poorly understood. We review the big open questions and formulate some partial answers.


  1. 1.
    Abiteboul, S., Beeri, C.: On the power of languages for the manipulation of complex objects. VLDB J. 4(4), 727–794 (1995)CrossRefGoogle Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)zbMATHGoogle Scholar
  3. 3.
    Abiteboul, S., Vianu, V.: Computing with first-order logic. J. Comput. Syst. Sci. 50(2), 309–335 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Afrati, F., Ullman, J.: Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)CrossRefGoogle Scholar
  5. 5.
    Aho, A., Ullman, J.: Universality of data retrieval languages. In: Conference Record, 6th ACM Symposium on Principles of Programming Languages, pp. 110–120 (1979)Google Scholar
  6. 6.
    Arenas, M., Diaz, G.: The exact complexity of the first-order logic definability problem. ACM Trans. Database Syst. 41(2), 13:1–13:14 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Armbrust, M., Xin, R., et al.: Spark SQL: relational data processing in Spark. In: Proceedings 2015 International Conference on Management of Data, pp. 1383–1394. ACM (2015)Google Scholar
  8. 8.
    Bancilhon, F.: On the completeness of query languages for relational data bases. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 112–123. Springer, Heidelberg (1978). Scholar
  9. 9.
    Beeri, C., Milo, T., Ta-Shma, P.: Towards a language for the fully generic queries. In: Cluet, S., Hull, R. (eds.) DBPL 1997. LNCS, vol. 1369, pp. 239–259. Springer, Heidelberg (1998). Scholar
  10. 10.
    Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Ann. Pure Appl. Logic 100, 141–187 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Botoeva, E., Calvanese, D., Cogres, B., Xiao, G.: Expressivity and complexity of MongoDB queries. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Proceedings 21st International Conference on Database Theory. LIPIcs, vol. 98, pp. 9:1–9:23. Schloss Dagstuhl-Leibniz Center for Informatics (2018)Google Scholar
  12. 12.
    Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit provenance in query and update languages. ACM Trans. Database Syst. 33(4), 28:1–28:47 (2008)CrossRefGoogle Scholar
  13. 13.
    Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Well-definedness and semantic type checking for the nested relational calculus. Theor. Comput. Sci. 371(3), 183–199 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chandra, A.: Programming primitives for database languages. In: Conference Record, 8th ACM Symposium on Principles of Programming Languages, pp. 50–62 (1981)Google Scholar
  16. 16.
    Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book. Prentice Hall, Upper Saddle River (2009)Google Scholar
  18. 18.
    Grädel, E., Grohe, M.: Is polynomial time choiceless? In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 193–209. Springer, Cham (2015). Scholar
  19. 19.
    Hull, R., Su, J.: Algebraic and calculus query languages for recursively typed complex objects. J. Comput. Syst. Sci. 47(1), 121–156 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hull, R., Yap, C.: The format model, a theory of database organization. J. ACM 31(3), 518–537 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kuper, G., Vardi, M.: The logical data model. ACM Trans. Database Syst. 18(3), 379–413 (1993)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Madelaine, F.: Mémoire d’habilitation à diriger des recherches, Université Blaise Pascal, Clermond-Ferrand (2012).
  23. 23.
    Paredaens, J.: On the expressive power of the relational algebra. Inf. Process. Lett. 7(2), 107–111 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ta-Shma, P.: Genericity in Database Query Languages. Ph.D. thesis, Hebrew University (1997)Google Scholar
  25. 25.
    Tarski, A.: What are logical notions? History and philosophy of logic 7, 143–154 (1986). Edited by J. CorcoranMathSciNetCrossRefGoogle Scholar
  26. 26.
    Zaharia, M., et al.: Spark: cluster computing with working sets. In: Proceedings 2nd USENIX Workshop on Hot Topics in Cloud Computing (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hasselt UniversityHasseltBelgium

Personalised recommendations