Dissolved Organic Matter Interactions with Mercury in the Florida Everglades

  • Andrew M. GrahamEmail author


The purpose of this chapter is to review the interactions of mercury with dissolved organic matter (DOM) in the Florida Everglades. Attention is given to the role of DOM to the complexation of inorganic Hg and methylmercury (MeHg), microbial Hg methylation, Hg and MeHg photochemistry, and MeHg bioaccumulation. This review shows that substantive changes in both DOM concentration and quality can be traced to land and water management practices in the northern Everglades, and that these perturbations to carbon cycling have likely impacted Hg biogeochemical cycling in the Everglades. The impact of sulfur enrichment on DOM quality, and its corresponding impact on microbial Hg methylation, is a special emphasis of the chapter.


Everglades Mercury Methylmercury Dissolved organic matter Sulfur Speciation 



This chapter is dedicated to the memory of George Aiken, who contributed many seminal studies of DOM in the Everglades and elsewhere, and who provided invaluable mentorship to the author.


  1. Aiken GR, Gilmour CC, Krabbenhoft DP, Orem W (2011) Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Crit Rev Environ Sci Technol 41:217–248CrossRefGoogle Scholar
  2. Aquatic Cycling of Mercury in the Everglades Database. Accessed 10 May 2017
  3. Babiarz CL, Benoit JM, Shafer MM, Andren AW (1998) Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry 41:237–257CrossRefGoogle Scholar
  4. Balogh SJ, Nollet YH, Swain EB (2004) Redox chemistry in Minnesota streams during episodes of increased methylmercury discharge. Environ Sci Technol 38:4921–4927PubMedCrossRefGoogle Scholar
  5. Barkay T, Gillman M, Turner R (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271PubMedPubMedCentralGoogle Scholar
  6. Bates AL, Orem WH, Harvey JW (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299PubMedCrossRefGoogle Scholar
  7. Benoit J, Gilmour C, Mason R, Heyes A (1999a) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957CrossRefGoogle Scholar
  8. Benoit J, Mason R, Gilmour C (1999b) Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem 18:2138–2141PubMedGoogle Scholar
  9. Bergamaschi BA, Krabbenhoft DP, Aiken GR et al (2012) Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environ Sci Technol 46:1371–1378PubMedCrossRefGoogle Scholar
  10. Black FJ, Poulin BA, Flegal AR (2012) Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim Cosmochim Acta 84:492–507CrossRefGoogle Scholar
  11. Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ Sci Technol 43:2720–2725. CrossRefPubMedGoogle Scholar
  12. Castro H, Reddy KR, Ogram A (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chasar LC, Scudder BC, Stewart AR et al (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43:2733–2739PubMedCrossRefGoogle Scholar
  14. Chen M, Maie N, Parish K, Jaffé R (2013) Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland. Biogeochemistry 115:167–183CrossRefGoogle Scholar
  15. Christensen GA, Wymore AM, King AJ et al (2016) Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment. Appl Environ Microbiol 82:6068–6078PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cleckner LB, Garrison PJ, Hurley JP, Olson ML (1998) Trophic transfer of methyl mercury in the northern Florida Everglades. Biogeochemistry 40:347–361CrossRefGoogle Scholar
  17. Cory R, McKnight D (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149PubMedCrossRefGoogle Scholar
  18. Davis SE III, Childers DL, Noe GB (2006) The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569:87–97CrossRefGoogle Scholar
  19. Deonarine A, Hsu-Kim H (2009) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43:2368–2373PubMedCrossRefGoogle Scholar
  20. Deonarine A, Lau BLT, Aiken GR et al (2011) Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ Sci Technol 45:3217–3223PubMedCrossRefGoogle Scholar
  21. Dittman JA, Shanley JB, Driscoll CT et al (2010) Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams. Water Resour Res 46:W07522CrossRefGoogle Scholar
  22. Drexel R, Haitzer M, Ryan J et al (2002) Mercury(II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064PubMedCrossRefGoogle Scholar
  23. Driscoll CT, Blette V, Yan C, Schofield CL (1995) The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water Air Soil Pollut 80:499–508CrossRefGoogle Scholar
  24. Drott A, Lambertsson L, Bjorn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41:2270–2276PubMedCrossRefGoogle Scholar
  25. Fernández-Gómez C, Drott A, Bjorn E et al (2013) Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal Lake-wetland gradient. Environ Sci Technol 47:6279–6287PubMedCrossRefGoogle Scholar
  26. Gasper J, Aiken G, Ryan J (2007) A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants. Appl Geochem 22:1583–1597CrossRefGoogle Scholar
  27. Gerbig C, Kim C, Stegemeier J et al (2011) Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environ Sci Technol 45:9180–9187PubMedCrossRefGoogle Scholar
  28. Gilmour C, Krabbenhoft DP, Orem W (2004) Appendix 2B-3: mesocosm studies to quantify how methylmercury in the Everglades responds to changes in mercury, sulfur, and nutrient loading. In: 2004 Everglades consolidated report, South Florida Water Management District and Florida Department of Environmental ProtectionGoogle Scholar
  29. Gilmour CC, Podar M, Bullock AL et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820PubMedCrossRefGoogle Scholar
  30. Gondikas AP, Jang EK, Hsu-Kim H (2010) Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids. J Colloid Interface Sci 347:167–171PubMedCrossRefGoogle Scholar
  31. Gorski PR, Armstrong DE, Hurley JP, Krabbenhoft DP (2008) Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environ Pollut 154:116–123PubMedPubMedCentralCrossRefGoogle Scholar
  32. Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723PubMedCrossRefGoogle Scholar
  33. Graham AM, Aiken GR, Gilmour CC (2013) Effect of dissolved organic matter source and character on microbial Hg methylation in Hg–S–DOM solutions. Environ Sci Technol 47:5746–5754PubMedCrossRefGoogle Scholar
  34. Graham AM, Cameron-Burr KT, Hajic HA et al (2017) Sulfurization of dissolved organic matter increases Hg-sulfide-dissolved organic matter bioavailability to a Hg-methylating bacterium. Environ Sci Technol 51:9080–9088PubMedCrossRefGoogle Scholar
  35. Gu B, Bian Y, Miller CL, Dong W (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Nat Acad Sci 108:1479–1483PubMedCrossRefGoogle Scholar
  36. Haitzer M, Aiken G, Ryan J (2002) Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio. Environ Sci Technol 36:3564–3570PubMedCrossRefGoogle Scholar
  37. Haitzer M, Aiken G, Ryan J (2003) Binding of mercury(II) to aquatic humic substances: influence of pH and source of humic substances. Environ Sci Technol 37:2436–2441PubMedCrossRefGoogle Scholar
  38. Hall BD, Aiken GR, Krabbenhoft DP et al (2008) Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environ Poll 154:124–134CrossRefGoogle Scholar
  39. He F, Zheng W, Liang L, Gu B (2012) Mercury photolytic transformation affected by low-molecular-weight natural organics in water. Sci Tot Environ 416:429–435CrossRefGoogle Scholar
  40. Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20CrossRefGoogle Scholar
  41. Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  42. Hertkorn N, Harir M, Cawley KM et al (2016) Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS. Biogeosciences 13:2257–2277CrossRefGoogle Scholar
  43. Hintelmann H, Keppel-Jones K, Evans RD (2000) Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem 19:2204–2211CrossRefGoogle Scholar
  44. Hoffmann M, Mikutta C, Kretzschmar R (2012) Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy. Environ Sci Technol 46:11788–11797PubMedCrossRefGoogle Scholar
  45. Holmes CD, Krishnamurthy NP, Caffrey JM et al (2016) Thunderstorms increase mercury wet deposition. Environ Sci Technol 50:9343–9350PubMedCrossRefGoogle Scholar
  46. Horvath O, Vogler A (1993) Photoredox chemistry of chloromercurate(II) complexes in acetonitrile. Inorg Chem 32:5485–5489CrossRefGoogle Scholar
  47. Hsu H, Sedlak D (2003) Strong Hg(II) complexation in municipal wastewater effluent and surface waters. Environ Sci Technol 37:2743–2749PubMedCrossRefGoogle Scholar
  48. Hurley JP, Krabbenhoft DP, Cleckner LB, Olson ML (1998) System controls on the aqueous distribution of mercury in the northern Florida Everglades. Biogeochemistry 40:293–310CrossRefGoogle Scholar
  49. Jeremiason JD, Portner JC, Aiken GR et al (2015) Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter. Environ Sci Process Impacts 17:1892–1903PubMedCrossRefGoogle Scholar
  50. Jonsson S, Skyllberg U, Nilsson MB et al (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624PubMedCrossRefGoogle Scholar
  51. Khwaja A, Bloom P, Brezonik P (2006) Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environ Sci Technol 40:844–849PubMedCrossRefGoogle Scholar
  52. Khwaja AR, Bloom PR, Brezonik PL (2010) Binding strength of methylmercury to aquatic NOM. Environ Sci Technol 44:6151–6156PubMedCrossRefGoogle Scholar
  53. King J, Kostka JE, Frischer M, Saunders F (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437PubMedPubMedCentralCrossRefGoogle Scholar
  54. Krabbenhoft DP, Hurley JP, Olson ML, Cleckner LB (1998) Diel variability of mercury phase and species distributions in the Florida Everglades. Biogeochemistry 40:311–325CrossRefGoogle Scholar
  55. Kucharzyk KH, Deshusses MA, Porter KA, Hsu-Kim H (2015) Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Environ Sci Process Impacts 17:1568–1577PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lamborg C, Tseng C, Fitzgerald W et al (2003) Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with “reducible Hg” titrations. Environ Sci Technol 37:3316–3322PubMedCrossRefGoogle Scholar
  57. Lenherr I, St. Louis V (2009) Importance of ultraviolet radiation in photodemethylation of methylmercury in freshwater ecosystems. Environ Sci Technol 43:5692–5698CrossRefGoogle Scholar
  58. Liem-Nguyen V, Bouchet S, Bjorn E (2015) Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri) benzoate and online preconcentration. Anal Chem 87:1089–1096PubMedCrossRefGoogle Scholar
  59. Lindberg S, Dong W, Chanton J et al (2005) A mechanism for bimodal emission of gaseous mercury from aquatic macrophytes. Atmos Environ 39:1289–1301CrossRefGoogle Scholar
  60. Liu G, Cai Y, Philippi T et al (2008) Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Environ Pollut 153:257–265PubMedCrossRefGoogle Scholar
  61. Liu G, Cai Y, Mao Y et al (2009) Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades. Environ Sci Technol 43:4361–4366PubMedCrossRefGoogle Scholar
  62. Liu G, Naja GM, Kalla P et al (2011) Legacy and fate of mercury and methylmercury in the Florida Everglades. Environ Sci Technol 45:496–501PubMedCrossRefGoogle Scholar
  63. Luengen AC, Fisher NS, Bergamaschi BA (2012) Dissolved organic matter reduces algal accumulation of methylmercury. Environ Toxicol Chem 31:1712–1719PubMedCrossRefGoogle Scholar
  64. MacCrehan W, Shea D (1995) Temporal relationship of thiols to inorganic sulfur compounds in anoxic Chesapeake Bay sediment porewater. ACS Symp Ser 612:294–310CrossRefGoogle Scholar
  65. Madden AS, Hochella MF Jr (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398CrossRefGoogle Scholar
  66. Maie N, Yang C, Miyoshi T et al (2005) Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnol Oceanogr 50:23–35CrossRefGoogle Scholar
  67. Maie N, Jaffé R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314CrossRefGoogle Scholar
  68. Manceau A, Nagy KL (2012) Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochim Cosmochim Acta 99:206–223CrossRefGoogle Scholar
  69. Mazrui NM, Jonsson S, Thota S et al (2016) Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochim Cosmochim Acta 194:153–162PubMedPubMedCentralCrossRefGoogle Scholar
  70. McCormick PV, Harvey JW, Crawford ES (2011) Influence of changing water sources and mineral chemistry on the Everglades ecosystem. Crit Rev Environ Sci Technol 41:28–63CrossRefGoogle Scholar
  71. Miller CL, Southworth G, Brooks S et al (2009) Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment. Environ Sci Technol 43:8548–8553PubMedCrossRefGoogle Scholar
  72. Moreau JW, Gionfriddo CM, Krabbenhoft DP et al (2015) The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol 46:292–299Google Scholar
  73. National Institute of Standards and Technology (2013) NIST critically selected stability constants of metal complexesGoogle Scholar
  74. Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638PubMedCrossRefGoogle Scholar
  75. Parks JM, Johs A, Podar M et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335PubMedCrossRefGoogle Scholar
  76. Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41:125–131PubMedCrossRefGoogle Scholar
  77. Pollman CD, Axelrad DM (2014) Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013). Bull Environ Contam Toxicol 93:509–516PubMedCrossRefGoogle Scholar
  78. Poulin BA, Ryan JN, Nagy KL et al (2017) Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment. Environ Sci Technol 51:3630–3639PubMedCrossRefGoogle Scholar
  79. Qian Y, Yin X, Lin H et al (2014) Why dissolved organic matter enhances photodegradation of methylmercury. Environ Sci Technol Lett 1:426–431CrossRefGoogle Scholar
  80. Qualls RG, Richardson CJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229CrossRefGoogle Scholar
  81. Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55:319–331PubMedCrossRefGoogle Scholar
  82. Ravichandran M, Aiken G, Reddy M, Ryan J (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 32:3305–3311CrossRefGoogle Scholar
  83. Ravichandran M, Aiken G, Ryan J, Reddy M (1999) Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 33:1418–1423CrossRefGoogle Scholar
  84. Riccardi D, Guo H-B, Parks JM et al (2013) Why mercury prefers soft ligands. J Phys Chem Lett 4:2317–2322CrossRefGoogle Scholar
  85. Rode M, Wade AJ, Cohen MJ et al (2016) Sensors in the stream: the high-frequency wave of the present. Environ Sci Technol 50:10297–10307PubMedCrossRefGoogle Scholar
  86. Rumbold DG, Lange TR, Axelrad DM, Atkeson TD (2008) Ecological risk of methylmercury in Everglades National Park, Florida, USA. Ecotoxicology 17:632–641PubMedCrossRefGoogle Scholar
  87. Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126CrossRefGoogle Scholar
  88. Schaefer JK, Rocks SS, Zheng W et al (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108:8714–8719PubMedCrossRefGoogle Scholar
  89. Scheidt DJ, Kalla PI (2007) EPA Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat monitoring for adaptive management: a R-EMAP status report. US EPA Region 4, Athens, GAGoogle Scholar
  90. Schuster PF, Striegl RG, Aiken GR et al (2011) Mercury export from the Yukon River basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267PubMedCrossRefGoogle Scholar
  91. Schwarzenbach G, Schellenberg M (1965) Die komplexchemie des methylquecksilber-kations. Helv Chim Acta 48:28–46CrossRefGoogle Scholar
  92. Si L, Ariya PA (2011) Aqueous photoreduction of oxidized mercury species in presence of selected alkanethiols. Chemosphere 84:1079–1084PubMedCrossRefGoogle Scholar
  93. Siciliano SD, O’Driscol NJ, Lean DRS (2002) Microbial reduction and oxidation of mercury in freshwater lakes. Environ Sci Technol 36:3064–3068PubMedCrossRefGoogle Scholar
  94. Sklar FH, Chimney MJ, Newman S et al (2005) The ecological–societal underpinnings of Everglades restoration. Front Ecol 3:161–169Google Scholar
  95. Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosci 113:G00C03CrossRefGoogle Scholar
  96. Skyllberg U, Bloom P, Qian J et al (2006) Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180PubMedCrossRefGoogle Scholar
  97. Sleighter RL, Chin Y-P, Arnold WA et al (2014) Evidence of incorporation of abiotic S and N into prairie wetland dissolved organic matter. Environ Sci Technol Lett 1:345–350CrossRefGoogle Scholar
  98. Slowey AJ (2010) Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochim Cosmochim Acta 74:4693–4708CrossRefGoogle Scholar
  99. Stern J, Wang Y, Gu B, Newman J (2007) Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Appl Geochem 22:1936–1948CrossRefGoogle Scholar
  100. Szczuka A, Morel FMM, Schaefer JK (2015) Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 49:7432–7438PubMedCrossRefGoogle Scholar
  101. Tai C, Li Y, Yin Y et al (2014) Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation. Environ Sci Technol 48:7333–7340PubMedCrossRefGoogle Scholar
  102. Thomas SA, Tong T, Gaillard J-F (2014) Hg(II) bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics 6:2213–2222PubMedCrossRefGoogle Scholar
  103. Tossell JA (1998) Theoretical study of the photodecomposition of methyl Hg complexes. J Phys Chem A 102:3587–3591CrossRefGoogle Scholar
  104. Tsui MTK, Finlay JC (2011) Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environ Sci Technol 45:5981–5987PubMedCrossRefGoogle Scholar
  105. Wagner S, Jaffé R, Cawley K et al (2015) Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system. Front Chem 3:155CrossRefGoogle Scholar
  106. Wang Y, Hsieh YP, Landing WM et al (2002) Chemical and carbon isotopic evidence for the source and fate of dissolved organic matter in the northern Everglades. Biogeochemistry 61:269–289CrossRefGoogle Scholar
  107. Waples J, Nagy K, Aiken G, Ryan J (2005) Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta 69:1575–1588CrossRefGoogle Scholar
  108. Warner KA, Roden EE, Bonzongo J-C (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165PubMedCrossRefGoogle Scholar
  109. Watras CJ, Back RC, Halvorsen S et al (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208PubMedPubMedCentralCrossRefGoogle Scholar
  110. Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708PubMedCrossRefGoogle Scholar
  111. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696PubMedCrossRefGoogle Scholar
  112. Yamashita Y, Scinto LJ, Maie N, Jaffé R (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems 13:1006–1019CrossRefGoogle Scholar
  113. Yu Z-G, Peiffer S, Göttlicher J, Knorr K-H (2015) Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ Sci Technol 49:5441–5449PubMedCrossRefGoogle Scholar
  114. Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang J, Wang F, House J, Page B (2004) Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol Oceanogr 49:2276–2286CrossRefGoogle Scholar
  116. Zhang T, Kim B, Levard C et al (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958PubMedCrossRefGoogle Scholar
  117. Zhang T, Kucharzyk KH, Kim B et al (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 48:9133–9141PubMedCrossRefGoogle Scholar
  118. Zheng W, Hintelmann H (2010) Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds. J Phys Chem A 114:4246–4253PubMedCrossRefGoogle Scholar
  119. Zheng W, Liang L, Gu B (2012) Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 46:292–299PubMedCrossRefGoogle Scholar
  120. Zhong H, Wang W-X (2009) Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environ Sci Technol 43:8998–9003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grinnell College Department of ChemistryGrinnellUSA

Personalised recommendations