Asteroid Impacts and Their Geological Consequences

  • Boris A. IvanovEmail author
Part of the Impact Studies book series (IMPACTSTUD)


A review of available data on the impact cratering in the Solar System is presented. Most of data have been collected during robotic space missions to the Moon and other terrestrial planets. The main attention is attracted to morphology and morphometry of impact craters, comparable is size with the Puchezh-Katunki structure. All these craters have clearly visible central mound. Crater’s depth-diameter relations on planetary bodies with various surface gravity accelerations demonstrate that the simple-to-complex transitional crater diameter increases with decreasing of the surface gravity. The original depth of the Puchezh-Katunki structure and the presence of the central uplift well fit general trends, observed for impact craters on all planetary bodies of the terrestrial type.


  1. Cochrane CG, Ghail RC (2006) Topographic constraints on impact crater morphology on Venus from high-resolution stereo synthetic aperture radar digital elevation models. J Geophys Res Planets 111:E04007. Scholar
  2. Croft SK (1985) The scaling of complex craters. J Geophys Res 90:C828–C842CrossRefGoogle Scholar
  3. Dones L, Brasser R, Kaib N, Rickman H (2015) Origin and evolution of the cometary reservoirs. Space Sci Rev 197:191–269CrossRefGoogle Scholar
  4. Grieve RAF, Robertson PB, Dence MR, Schultz PH (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Merill RB (ed) Multi-ring basins: formation and evolution. Pergamon Press, New York and Oxford, pp 37–57Google Scholar
  5. Heiken GH, Vaniman DT, French BM (1991) Lunar sourcebook—a user’s guide to the moon. Cambridge University Press, Cambridge, UK, p 753Google Scholar
  6. Herrick RR, Stahlke DL, Sharpton VL (2012) Fine-scale venusian topography from magellan stereo data. Eos, Trans Am Geophys Union 93(12):125–126CrossRefGoogle Scholar
  7. Hiesinger H, Marchi S, Schmedemann N, Schenk P, Pasckert JH, Neesemann A, O’Brien DP, Kneissl T, Ermakov AI, Fu RR, Bland MT, Nathues A, Platz T, Williams DA, Jaumann R, Castillo-Rogez JC, Ruesch O, Schmidt B, Park RS, Preusker F, Buczkowski DL, Russell CT, Raymond CA (2016) Cratering on Ceres: implications for its crust and evolution. Science 353(6303):aaf4759CrossRefGoogle Scholar
  8. Housen KR, Schmidt RM, Holsapple KA (1983) Crater ejecta scaling laws—fundamental forms based on dimensional analysis. J Geophys Res 88:2485–2499CrossRefGoogle Scholar
  9. Ivanov BA (1989) The morphometry of impact craters on Venus. Astronomicheskii Vestnik 23:39–49 (in Russian)Google Scholar
  10. Ivanov B (2008) Impact crater ing on venus: ballistic hole in the atmosphere (abs.). In: Proceedings European planetary science congress 2008, Münster, Germany, p 341Google Scholar
  11. Ivanov BA (2018) Size-frequency distribution of small lunar craters: widening with degradation and crater lifetime. Sol Syst Res 52(1):1–25CrossRefGoogle Scholar
  12. Ivanov BA, Ford PG (1993) The depths of the largest impact craters on Venus. Lunar and Planetary Science XXIV. Houston, TX, pp 689–690Google Scholar
  13. Ivanov BA, Bazilevsky AT, Krivchkov VP, Chernaia IM (1986) Impact craters of venus—analysis of venera 15 and 16 data. J Geophys Res 91:D413–D430CrossRefGoogle Scholar
  14. Ivanov BA, Nemchinov IV, Svetsov VA, Provalov AA, Khazins VM, Phillips RJ (1992) Impact cratering on Venus: Physical and mechanical models. J Geophys Res 97(E10):16167–16181CrossRefGoogle Scholar
  15. Kalynn J, Johnson CL, Osinski GR, Barnouin O (2013) Topographic characterization of lunar complex craters. Geophys Res Lett 40:38–42CrossRefGoogle Scholar
  16. Krüger T, Hergarten S, Kenkmann T (2018) Deriving morphometric parameters and the simple-to-complex transition diameter from a high-resolution, global database of fresh lunar impact craters (D ≥ ~ 3 km). J Geophys Res Planets 123:2667–2690CrossRefGoogle Scholar
  17. Melosh HJ (1989) Impact cratering—a geologic process. Oxford University Press, Oxford—New York, p 245Google Scholar
  18. Moore HJ, Hodges CA, Scott DH (1974) Multiringed basins—illustrated by orientale and associated features. In: Proceedings 5th lunar and planetary science conference, Pergamon Press, New York, pp 71–100Google Scholar
  19. Neish CD, Herrick RR, Zanetti M, Smith D (2017) The role of pre-impact topography in impact melt emplacement on terrestrial planets. Icarus 297:240–251CrossRefGoogle Scholar
  20. Osinski GR, Silber EA, Clayton J, Grieve RAF, Hansen K, Johnson CL, Kalynn J, Tornabene LL (2019) Transitional impact craters on the moon: insight into the effect of target lithology on the impact cratering process. Meteorit Planet Sci 54:573–591Google Scholar
  21. Ostrowski D, Bryson K (2019) The physical properties of meteorites. Planet Space Sci 165:148–178CrossRefGoogle Scholar
  22. Phillips RJ, Arvidson RE, Boyce JM, Campbell DB, Guest JE, Schaber GG, Soderblom LA (1991) Impact craters on venus—initial analysis from Magellan. Science 252:288–297CrossRefGoogle Scholar
  23. Phillips RJ, Raubertas RF, Arvidson RE, Sarkar IC, Herrick RR, Izenberg N, Grimm RE (1992) Impact craters and venus resurfacing history. J Geophys Res 97:15923–15948CrossRefGoogle Scholar
  24. Pike RJ (1977) Size-dependence in the shape of fresh impact craters on the moon. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and Explosion Cratering: Planetary and Terrestrial Implications. Pergamon Press, Oxford, pp 489–509Google Scholar
  25. Pike RJ (1980) Control of crater morphology by gravity and target type—Mars, Earth, Moon. In: Proceedings of the eleventh Lunar and Planetary Science Conference, pp 2159–2189Google Scholar
  26. Prieur NC, Rolf T, Luther R, Wünnemann K, Xiao Z, Werner SC (2017) The effect of target properties on transient crater scaling for simple craters. J Geophys Res Planets 122(8):2017JE005283CrossRefGoogle Scholar
  27. Robbins SJ, Watters WA, Chappelow JE, Bray VJ, Daubar IJ, Craddock RA, Beyer RA, Landis M, Ostrach LR, Tornabene LL, Riggs JD, Weave BP (2018) Measuring impact crater depth throughout the solar system. Meteorit Planet Sci 53:583–637CrossRefGoogle Scholar
  28. Scheeres DJ, Britt D, Carry B, Holsapple KA (2015) Asteroid Interiors and Morphology. In: Michel P, DeMeo FE, Bottke FW (eds) Asteroids IV. University of Arizona Press, Tucson, pp 745–766Google Scholar
  29. Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Eng 5:543–560CrossRefGoogle Scholar
  30. Schultz PH (1992) Atmospheric effects on ejecta emplacement and crater formation on venus from Magellan. J Geophys Res 97(E10):16183–16248CrossRefGoogle Scholar
  31. Sharpton VL (1994) Evidence from Magellan for unexpectedly deep complex craters on Venus. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America, Boulder, CO, pp 19–27Google Scholar
  32. Stopar JD, Robinson MS, Barnouin OS, McEwen AS, Speyerer EJ, Henriksen MR, Sutton SS (2017) Relative depths of simple craters and the nature of the lunar regolith. Icarus. Scholar
  33. Susorney HCM, Barnouin OS, Ernst CM, Johnson CL (2016) Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging. Icarus 271:180–193CrossRefGoogle Scholar
  34. Tornabene LL, Watters WA, Osinski GR, Boyce JM, Harrison TN, Ling V, McEwen AS (2018) A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars. Icarus 299:68–83CrossRefGoogle Scholar
  35. Werner SC, Ivanov BA (2015) Exogenic dynamics, cratering, and surface ages (chapter 10.10). In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elseiver, Oxford, pp 327–365CrossRefGoogle Scholar
  36. Wünnemann K, Ivanov BA (2003) Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planet Space Sci 51(13):831–845CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Dynamics of GeospheresMoscowRussia

Personalised recommendations