Skip to main content

Red Blood Cells Separation in a Curved T-Shaped Microchannel Fabricated by a Micromilling Technique

  • Conference paper
  • First Online:
VipIMAGE 2019 (VipIMAGE 2019)

Abstract

Biomedical microfluidic devices are fabricated using different fabrication technologies. The most popular method is the soft-lithography manly due their main attraction, its high resolution capabilities and low material cost. However, usually, the fabrication of the moulds to produce microfluidic devices, is performed in a cleanroom environment and with specialized equipment that can be quite time consuming and costly. The micromilling is an alternative process that demonstrated potential to address some of the challenges in microdevices fabrication. It is a precise method, capable of creating complex channel geometries with specific measurements while ensuring a high level of resolution and a small error of tolerance, at the micron scale level. In fact, the non-necessity of a clean room, and being a fast and cheap manufacturing method makes it a great alternative to the traditional lithography process. Thus, in the present work, we show the ability of a micromilling machine to manufacture complex microchannels such as a curved T-shaped microchannel. By using a high-speed microscopic video system, flow visualizations and measurements were performed at four separation regions. Overall, the results show that the curved T-shaped microchannel is able to perform partial separation of blood cells from plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faustino, V., Catarino, S.O., Lima, R., Minas, G.: Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J. Biomech. 49(11), 2280–2292 (2016). https://doi.org/10.1016/j.jbiomech.2015.11.031

    Article  PubMed  Google Scholar 

  2. Hossain, M.M., Rahman, T.: Low cost micro milling machine for prototyping plastic microfluidic devices. Proceedings 2(13), 707 (2018). https://doi.org/10.3390/proceedings2130707

    Article  Google Scholar 

  3. Pinto, V.P., Sousa, P.J., Cardoso, V.F., Minas, G.: Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 5(3), 738–755 (2014). https://doi.org/10.3390/mi5030738

    Article  Google Scholar 

  4. Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015). https://doi.org/10.1039/c5lc00234f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rincon Ardila, L., Wasnievski, L., Del Conte, E., Abackerli, A., Picarelli, T., Perroni, F., Schützer, K., Mewis, J., Uhlmann, E.: Micro-milling process for manufacturing of microfluidic moulds (2015). https://doi.org/10.20906/CPS/COB-2015-1250

  6. Faivre, M., Abkarian, M., Bickraj, K., Stone, H.A.: Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43(2), 147–159 (2006)

    PubMed  Google Scholar 

  7. Lima, R.: Analysis of the blood flow behavior through microchannels by a confocal micro-PIV/PTV system. Ph.D. (Eng) (2007)

    Google Scholar 

  8. Pinho, D., Yaginuma, T., Lima, R.: A microfluidic device for partial cell separation and deformability assessment. BioChip J. 7(4), 367–374 (2013). https://doi.org/10.1007/s13206-013-7408-0

    Article  CAS  Google Scholar 

  9. Rodrigues, R.O., Lopes, R., Pinho, D., Pereira, A.I., Garcia, V., Gassmann, S., Sousa, P.C., Lima, R.: In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements. BioChip J. 10(1), 9–15 (2016). https://doi.org/10.1007/s13206-016-0102-2

    Article  CAS  Google Scholar 

  10. Saadatmand, M., Shimogonya, Y., Yamaguchi, T., Ishikawa, T.: Enhancing cell-free layer thickness by bypass channels in a wall. J. Biomech. 49(11), 2299–2305 (2016). https://doi.org/10.1016/j.jbiomech.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  11. Sollier, E., Cubizolles, M., Fouillet, Y., Achard, J.-L.: Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed. Microdevices 12(3), 485–497 (2010). https://doi.org/10.1007/s10544-010-9405-6

    Article  PubMed  Google Scholar 

  12. Pinto, E., Faustino, V., Rodrigues, R.O., Pinho, D., Garcia, V., Miranda, J.M., Lima, R.: A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines 6(1), 121–135 (2015)

    Article  Google Scholar 

  13. Singhal, J., Pinho, D., Lopes, R., Sousa, P.C., Garcia, V., Schütte, H., Lima, R., Gassmann, S.: Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique. Micro Nanosyst. 7(3), 148–153 (2015). https://doi.org/10.2174/1876402908666160106000332

    Article  Google Scholar 

  14. Lopes, R., Rodrigues, R.O., Pinho, D., Garcia, V., Schütte, H., Lima, R., Gassmann, S.: Low cost microfluidic device for partial cell separation: micromilling approach. In: 2015 IEEE International Conference on Industrial Technology (ICIT), 17–19 March 2015, pp. 3347–3350 (2015). https://doi.org/10.1109/ICIT.2015.7125594

  15. Madureira, M., Faustino, V., Schütte, H., Gassmann, S., Lima, R.: Blood cells separation in a T-shaped microchannel fabricated by a micromilling technique 2 (2018). https://doi.org/10.24243/jmeb/2.5.171

    Article  Google Scholar 

  16. Abràmoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under the strategic grants UID/EEA/04436/2019, UID/EMS/04077/2019, and UID/EMS/00532/2019. The authors are also grateful for the funding of FCT through the projects POCI-01-0145-FEDER-016861, NORTE-01-0145-FEDER-029394, NORTE-01-0145-FEDER-030171, funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER, and the PhD grant SFRH/BD/91192/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Minas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madureira, M. et al. (2019). Red Blood Cells Separation in a Curved T-Shaped Microchannel Fabricated by a Micromilling Technique. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2019. VipIMAGE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-32040-9_59

Download citation

Publish with us

Policies and ethics