Skip to main content

Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

One of the biggest drawbacks of in vivo optical fluorescence imaging is the undesired emission by endogenous tissues and molecules of the subject under study, known as autofluorescence. In the worst case this obfuscates the signal of the actual bioprobe and in better cases it results in low signal-to-noise ratios and requires therefore large doses of the materials used as imaging/contrast agents, which rapidly becomes a toxicity issue. Hence, over roughly the last decade approaches were developed that enable autofluorescence-free imaging. These techniques can broadly be divided into two groups that will be discussed in this chapter. The first group includes a variety of nanomaterials that can either be imaged at wavelengths in the infrared above the autofluorescence signals (nanoparticles like Ag2S, PbS-based quantum dots but also carbon-based nanoparticles and organic polymers) while blocking the autofluorescence through filters or it is based on nanomaterials with long lifetimes, filtering autofluorescence through a time delay. The second group of approaches avoids the occurrence of autofluorescence either through the absence of excitation radiation (bioluminescence, chemiluminescence) or through irradiation before the in vivo application, which is the case for long-persistent luminescent or afterglow nanoparticles in the infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  2. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317. https://doi.org/10.1038/86684

    Article  CAS  Google Scholar 

  3. O’Connell MJ et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596. https://doi.org/10.1126/science.1072631

    Article  Google Scholar 

  4. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773. https://doi.org/10.1038/nnano.2009.294

    Article  CAS  Google Scholar 

  5. Diao S et al (2012) Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 134:16971–16974. https://doi.org/10.1021/ja307966u

    Article  CAS  Google Scholar 

  6. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci USA 108:8943–8948. https://doi.org/10.1073/pnas.1014501108

    Article  Google Scholar 

  7. Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R, Dai H (2013) Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 7:3644–3652. https://doi.org/10.1021/nn4006472

    Article  CAS  Google Scholar 

  8. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci 111:13948–13953. https://doi.org/ 10.1073/pnas.1400821111

    Article  CAS  Google Scholar 

  9. Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H (2012) In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 134:10664–10669. https://doi.org/ 10.1021/ja303737a

    Article  CAS  Google Scholar 

  10. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H (2010) High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–793

    Article  CAS  Google Scholar 

  11. Yi H, Ghosh D, Ham M-H, Qi J, Barone PW, Strano MS, Belcher AM (2012) M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett 12:1176–1183. https://doi.org/ 10.1021/nl2031663

    Article  CAS  Google Scholar 

  12. Hong G et al (2014) Near-infrared II fluorescence for imaging Hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ Cardiovasc Imaging 7:517–525. https://doi.org/10.1161/CIRCIMAGING.113.000305

    Article  Google Scholar 

  13. Hong G et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846. https://doi.org/10.1038/nm.2995

    Article  CAS  Google Scholar 

  14. Hong GS et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723–730. https://doi.org/10.1038/nphoton.2014.166

    Article  CAS  Google Scholar 

  15. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056. https://doi.org/10.1038/ncomms12056

    Article  CAS  Google Scholar 

  16. Diao S, Hong G, Antaris AL, Blackburn JL, Cheng K, Cheng Z, Dai H (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8:3027–3034. https://doi.org/10.1007/s12274-015-0808-9

    Article  CAS  Google Scholar 

  17. Diao S et al (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed 54:14758–14762. https://doi.org/10.1002/anie.201507473

    Article  CAS  Google Scholar 

  18. Wan H et al (2018) A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun 9:1171. https://doi.org/10.1038/s41467-018-03505-4

    Article  CAS  Google Scholar 

  19. Zhang Y et al (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34:3639–3646. https://doi.org/10.1016/j.biomaterials.2013.01.089

    Article  CAS  Google Scholar 

  20. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702. https://doi.org/10.1021/nn301218z

    Article  CAS  Google Scholar 

  21. Jiang P, Zhu C-N, Zhang Z-L, Tian Z-Q, Pang D-W (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135. https://doi.org/10.1016/j.biomaterials.2012.03.059

    Article  CAS  Google Scholar 

  22. Chen J et al (2016) Facile synthesis of β-lactoglobulin capped Ag2S quantum dots for in vivo imaging in the second near-infrared biological window. J Mater Chem B 4:6271–6278. https://doi.org/10.1039/C6TB01186A

    Article  CAS  Google Scholar 

  23. Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y (2018) Near-infrared fluorescent Ag2S nanodot-based signal amplification for efficient detection of circulating tumor cells. Anal Chem 90:6702–6709. https://doi.org/10.1021/acs.analchem.8b00514

    Article  CAS  Google Scholar 

  24. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H (2012) Vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 51:9818–9821. https://doi.org/10.1002/anie.201206059

    Article  CAS  Google Scholar 

  25. Hu F, Li C, Zhang Y, Wang M, Wu D, Wang Q (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8:1637–1647. https://doi.org/10.1007/s12274-014-0653-2

    Article  CAS  Google Scholar 

  26. Li C et al (2015) Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe. Small 11:4517–4525. https://doi.org/10.1002/smll.201500997

    Article  CAS  Google Scholar 

  27. Zhao D-H, Yang J, Xia R-X, Yao M-H, Jin R-M, Zhao Y-D, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54:527–530. https://doi.org/10.1039/C7CC09266K

    Article  CAS  Google Scholar 

  28. Li C et al (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400. https://doi.org/ 10.1016/j.biomaterials.2013.10.010

    Article  CAS  Google Scholar 

  29. Li C, Li F, Zhang Y, Zhang W, Zhang X-E, Wang Q (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9:12255–12263. https://doi.org/10.1021/acsnano.5b05503

    Article  CAS  Google Scholar 

  30. Chen G et al (2015) In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 53:265–273. https://doi.org/10.1016/j.biomaterials.2015.02.090

    Article  CAS  Google Scholar 

  31. Chen G, Tian F, Zhang Y, Zhang Y, Li C, Wang Q (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24:2481–2488. https://doi.org/10.1002/adfm.201303263

    Article  CAS  Google Scholar 

  32. Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25:2503–2509. https://doi.org/10.1021/cm400812v

    Article  CAS  Google Scholar 

  33. Ma J-J et al (2018) Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window. Nanoscale 10:10699–10704. https://doi.org/10.1039/C8NR02017E

    Article  CAS  Google Scholar 

  34. Kong Y et al (2016) Highly fluorescent ribonuclease-A-encapsulated Lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem Mater 28:3041–3050. https://doi.org/10.1021/acs.chemmater.6b00208

    Article  CAS  Google Scholar 

  35. Nakane Y, Tsukasaki Y, Sakata T, Yasuda H, Jin T (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem Commun 49:7584–7586. https://doi.org/10.1039/C3CC44000A

    Article  CAS  Google Scholar 

  36. Sasaki A, Tsukasaki Y, Komatsuzaki A, Sakata T, Yasuda H, Jin T (2015) Recombinant protein (EGFP-protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors. Nanoscale 7:5115–5119. https://doi.org/ 10.1039/C4NR06480A

    Article  CAS  Google Scholar 

  37. Tsukasaki Y, Komatsuzaki A, Mori Y, Ma Q, Yoshioka Y, Jin T (2014) A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice. Chem Commun 50:14356–14359. https://doi.org/10.1039/C4CC06542E

    Article  CAS  Google Scholar 

  38. Tsukasaki Y et al (2014) Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. RSC Adv 4:41164–41171. https://doi.org/10.1039/C4RA06098A

    Article  CAS  Google Scholar 

  39. Zebibula A et al (2018) Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Adv Funct Mater 28:1703451. https://doi.org/10.1002/adfm.201703451

    Article  CAS  Google Scholar 

  40. Benayas A et al (2015) PbS/CdS/ZnS quantum dots: a multifunctional platform for in vivo near-infrared low-dose fluorescence imaging. Adv Funct Mater 25:6650–6659. https://doi.org/10.1002/adfm.201502632

    Article  CAS  Google Scholar 

  41. Imamura Y, Yamada S, Tsuboi S, Nakane Y, Tsukasaki Y, Komatsuzaki A, Jin T (2016) Near-infrared emitting PbS quantum dots for in vivo fluorescence imaging of the thrombotic state in septic mouse brain. Molecules 21:1080

    Article  CAS  Google Scholar 

  42. Jin T, Imamura Y (2016) Applications of highly bright PbS quantum dots to non-invasive near-infrared fluorescence imaging in the second optical window. ECS J Solid State Sci Technol 5:R3138–R3145. https://doi.org/10.1149/2.0171601jss

    Article  CAS  Google Scholar 

  43. Chen J et al (2016) Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem Commun 52:4025–4028. https://doi.org/10.1039/C6CC00099A

    Article  CAS  Google Scholar 

  44. Labrador-Páez L et al (2018) Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale 10:12935–12956. https://doi.org/10.1039/C8NR02307G

    Article  Google Scholar 

  45. Dai Y et al (2017) Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl Mater Interfaces 9:26674–26683. https://doi.org/10.1021/acsami.7b06109

    Article  CAS  Google Scholar 

  46. del Rosal B et al (2016) Neodymium-based stoichiometric ultrasmall nanoparticles for multifunctional deep-tissue photothermal therapy. Adv Opt Mater 4:782–789. https://doi.org/ 10.1002/adom.201500726

    Article  CAS  Google Scholar 

  47. Ren F et al (2018) Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials 175:30–43. https://doi.org/10.1016/j.biomaterials.2018.05.021

    Article  CAS  Google Scholar 

  48. Rocha U et al (2014) Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 10:1141–1154. https://doi.org/10.1002/smll.201301716

    Article  CAS  Google Scholar 

  49. Villa I et al (2015) 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res 8:649–665. https://doi.org/10.1007/s12274-014-0549-1

    Article  CAS  Google Scholar 

  50. Wang P et al (2018) NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun 9:2898. https://doi.org/10.1038/ s41467-018-05113-8

    Article  CAS  Google Scholar 

  51. Wang X, Hu H, Zhang H, Li C, An B, Dai J (2018) Single ultrasmall Mn2+-doped NaNdF4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging. Nano Res 11:1069–1081. https://doi.org/10.1007/s12274-017-1727-8

    Article  CAS  Google Scholar 

  52. Yang D, Cao C, Feng W, Huang C, Li F (2018) Synthesis of NaYF4:Nd@NaLuF4@SiO2@PS colloids for fluorescence imaging in the second biological window. J Rare Earths 36:113–118. https://doi.org/10.1016/j.jre.2017.07.009

    Article  CAS  Google Scholar 

  53. Yang Q, Li X, Xue Z, Li Y, Jiang M, Zeng S (2018) Short-wave near-infrared emissive GdPO4:Nd3+ theranostic probe for in vivo bioimaging beyond 1300 nm. RSC Adv 8:12832–12840. https://doi.org/10.1039/C7RA12864A

    Article  CAS  Google Scholar 

  54. Deng Z, Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H (2018) A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm. Nanoscale 10:9393–9400. https://doi.org/10.1039/C8NR00305J

    Article  CAS  Google Scholar 

  55. Kamimura M, Kanayama N, Tokuzen K, Soga K, Nagasaki Y (2011) Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate). Nanoscale 3:3705–3713. https://doi.org/ 10.1039/C1NR10466G

    Article  CAS  Google Scholar 

  56. Kamimura M, Matsumoto T, Suyari S, Umezawa M, Soga K (2017) Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF4 nanoparticles. J Mater Chem B 5:1917–1925. https://doi.org/10.1039/C7TB00070G

    Article  CAS  Google Scholar 

  57. Lei X et al (2018) Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem Sci 9:4682–4688. https://doi.org/ 10.1039/C8SC00927A

    Article  CAS  Google Scholar 

  58. Naczynski DJ et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199. https://doi.org/10.1038/ncomms3199

    Article  CAS  Google Scholar 

  59. Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN (2016) Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc 138:16192–16195

    Article  CAS  Google Scholar 

  60. Tao Z et al (2017) Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials 134:202–215. https://doi.org/10.1016/j.biomaterials.2017.04.046

    Article  CAS  Google Scholar 

  61. Tao Z et al (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed 52:13002–13006. https://doi.org/10.1002/anie.201307346

    Article  CAS  Google Scholar 

  62. Dang X, Gu L, Qi J, Correa S, Zhang G, Belcher AM, Hammond PT (2016) Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc Natl Acad Sci 113:5179–5184. https://doi.org/10.1073/pnas.1521175113

    Article  CAS  Google Scholar 

  63. Hong G et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206. https://doi.org/10.1038/ncomms5206

    Article  CAS  Google Scholar 

  64. Antaris AL et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242. https://doi.org/10.1038/nmat4476

    Article  CAS  Google Scholar 

  65. Gu L et al (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4:2326. https://doi.org/10.1038/ncomms3326

    Article  CAS  Google Scholar 

  66. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  Google Scholar 

  67. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336. https://doi.org/10.1038/nmat2398

    Article  CAS  Google Scholar 

  68. Joo J, Liu X, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241. https://doi.org/ 10.1021/acsnano.5b01594

    Article  CAS  Google Scholar 

  69. Wei C, Ma L, Wei H, Liu Z, Bian Z, Huang C (2018) Advances in luminescent lanthanide complexes and applications. Science China Technol Sci 61(9):1265–1285. https://doi.org/10.1007/s11431-017-9212-7

    Article  CAS  Google Scholar 

  70. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W (2018) Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev 118:1770–1839. https://doi.org/10.1021/acs.chemrev.7b00425

    Article  CAS  Google Scholar 

  71. Zheng X et al (2016) High-contrast visualization of upconversion luminescence in mice using time-gating approach. Anal Chem 88:3449–3454. https://doi.org/ 10.1021/acs.analchem.5b04626

    Article  CAS  Google Scholar 

  72. del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM (2016) Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater 28:10188–10193. https://doi.org/10.1002/adma.201603583

    Article  CAS  Google Scholar 

  73. Tan M et al (2018) Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 10(37). https://doi.org/10.1039/C8NR02382D

  74. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214. https://doi.org/ 10.1021/cr400425h

    Article  CAS  Google Scholar 

  75. Ortgies DH et al (2018) Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12:4362–4368. https://doi.org/10.1021/acsnano.7b09189

    Article  CAS  Google Scholar 

  76. Fan Y et al (2018) Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol 13(10):941–946. https://doi.org/10.1038/s41565-018-0221-0

    Article  CAS  Google Scholar 

  77. Li Y, Gecevicius M, Qiu J (2016) Long persistent phosphors—from fundamentals to applications. Chem Soc Rev 45:2090–2136. https://doi.org/10.1039/C5CS00582E

    Article  CAS  Google Scholar 

  78. le Masne de Chermont Q et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci 104:9266–9271

    Article  CAS  Google Scholar 

  79. Pan Z, Lu Y-Y, Liu F (2011) Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat Mater 11:58. https://doi.org/10.1038/nmat3173

    Article  CAS  Google Scholar 

  80. Li Y et al (2014) Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging. J Mater Chem C 2:2657–2663. https://doi.org/10.1039/C4TC00014E

    Article  CAS  Google Scholar 

  81. Maldiney T et al (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13:418–426. https://doi.org/10.1038/nmat3908

    Article  CAS  Google Scholar 

  82. Ai T et al (2018) Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials 167:216–225. https://doi.org/10.1016/j.biomaterials.2018.01.031

    Article  CAS  Google Scholar 

  83. Sun X, Shi J, Fu X, Yang Y, Zhang H (2018) Long-term in vivo biodistribution and toxicity study of functionalized near-infrared persistent luminescence nanoparticles. Sci Rep 8:10595. https://doi.org/10.1038/s41598-018-29019-z

    Article  CAS  Google Scholar 

  84. Chen L-J, Sun S-K, Wang Y, Yang C-X, Wu S-Q, Yan X-P (2016) Activatable multifunctional persistent luminescence nanoparticle/copper sulfide Nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl Mater Interfaces 8:32667–32674. https://doi.org/10.1021/acsami.6b10702

    Article  CAS  Google Scholar 

  85. Wang J et al (2017) Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11:8010–8017. https://doi.org/10.1021/acsnano.7b02643

    Article  CAS  Google Scholar 

  86. Wang J, Li J, Yu J, Zhang H, Zhang B (2018) Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12:4246–4258. https://doi.org/10.1021/acsnano.7b07606

    Article  CAS  Google Scholar 

  87. Li Y et al (2014) A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example. J Mater Chem C 2:2019–2027. https://doi.org/10.1039/C3TC32075H

    Article  CAS  Google Scholar 

  88. Kamimura S, Xu C-N, Yamada H, Terasaki N, Fujihala M (2014) Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging. Jpn J Appl Phys 53:092403

    Article  Google Scholar 

  89. Caratto V et al (2014) NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants. ACS Appl Mater Interfaces 6:17346–17351. https://doi.org/10.1021/am504523s

    Article  CAS  Google Scholar 

  90. Li Y et al (2015) Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater 7:e180. https://doi.org/10.1038/am.2015.38

    Article  CAS  Google Scholar 

  91. Nie J, Li Y, Liu S, Chen Q, Xu Q, Qiu J (2017) Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci Rep 7:12392. https://doi.org/10.1038/s41598-017-12591-1

    Article  CAS  Google Scholar 

  92. Teng Y, Zhou J, Ma Z, Smedskjaer MM, Qiu J (2011) Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors. J Electrochem Soc 158:K17–K19. https://doi.org/10.1149/1.3518767

    Article  CAS  Google Scholar 

  93. Yu N, Liu F, Li X, Pan Z (2009) Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. Appl Phys Lett 95:231110. https://doi.org/10.1063/1.3272672

    Article  CAS  Google Scholar 

  94. Xu J, Tanabe S, Sontakke AD, Ueda J (2015) Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows. Appl Phys Lett 107:081903. https://doi.org/10.1063/1.4929495

    Article  CAS  Google Scholar 

  95. Zhan-Jun L, Hong-Wu Z, Meng S, Jiang-Shan S, Hai-Xia F (2012) A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. J Mater Chem 22:24713–24720. https://doi.org/10.1039/C2JM35650C

    Article  Google Scholar 

  96. Sun S-K, Wang H-F, Yan X-P (2018) Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to Theranostics. Acc Chem Res 51:1131–1143. https://doi.org/10.1021/acs.accounts.7b00619

    Article  CAS  Google Scholar 

  97. Palner M, Pu K, Shao S, Rao J (2015) Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew Chem Int Ed 54:11477–11480. https://doi.org/10.1002/anie.201502736

    Article  CAS  Google Scholar 

  98. Miao Q et al (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102. https://doi.org/10.1038/nbt.3987

    Article  CAS  Google Scholar 

  99. Zhen X, Xie C, Pu K (2018) Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew Chem Int Ed 57:3938–3942. https://doi.org/10.1002/anie.201712550

    Article  CAS  Google Scholar 

  100. Xie C, Zhen X, Miao Q, Lyu Y, Pu K (2018) Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv Mater 30:1801331. https://doi.org/10.1002/adma.201801331

    Article  CAS  Google Scholar 

  101. Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases cellular and molecular. CMLS Cell Mol Life Sci 59:1833–1850. https://doi.org/10.1007/pl00012509

    Article  CAS  Google Scholar 

  102. Iwano S et al (2013) Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron 69:3847–3856. https://doi.org/10.1016/j.tet.2013.03.050

    Article  CAS  Google Scholar 

  103. Jathoul AP, Grounds H, Anderson JC, Pule MA (2014) A dual-color far-red to near-infrared firefly luciferin analogue designed for multiparametric bioluminescence imaging. Angew Chem Int Ed 53:13059–13063. https://doi.org/10.1002/anie.201405955

    Article  CAS  Google Scholar 

  104. Kitada N et al (2018) Toward bioluminescence in the near-infrared region: tuning the emission wavelength of firefly luciferin analogues by allyl substitution. Tetrahedron Lett 59:1087–1090. https://doi.org/10.1016/j.tetlet.2018.01.078

    Article  CAS  Google Scholar 

  105. Kiyama M et al (2018) Quantum yield improvement of red-light-emitting firefly luciferin analogues for in vivo bioluminescence imaging. Tetrahedron 74:652–660. https://doi.org/ 10.1016/j.tet.2017.11.051

    Article  CAS  Google Scholar 

  106. Kojima R et al (2015) Development of a sensitive bioluminogenic probe for imaging highly reactive oxygen species in living rats. Angew Chem Int Ed 54:14768–14771. https://doi.org/ 10.1002/anie.201507530

    Article  CAS  Google Scholar 

  107. Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y (2013) Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angew Chem Int Ed 52:1175–1179. https://doi.org/10.1002/anie.201205151

    Article  CAS  Google Scholar 

  108. Miura C et al (2013) Synthesis and luminescence properties of biphenyl-type firefly luciferin analogs with a new, near-infrared light-emitting bioluminophore. Tetrahedron 69:9726–9734. https://doi.org/10.1016/j.tet.2013.09.018

    Article  CAS  Google Scholar 

  109. Mofford DM, Reddy GR, Miller SC (2014) Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over d-luciferin. J Am Chem Soc 136:13277–13282. https://doi.org/10.1021/ja505795s

    Article  CAS  Google Scholar 

  110. Rumyantsev KA, Turoverov KK, Verkhusha VV (2016) Near-infrared bioluminescent proteins for two-color multimodal imaging. Sci Rep 6:36588. https://doi.org/10.1038/srep36588

    Article  CAS  Google Scholar 

  111. Wu W et al (2017) cybLuc: an effective aminoluciferin derivative for deep bioluminescence imaging. Anal Chem 89:4808–4816. https://doi.org/10.1021/acs.analchem.6b03510

    Article  CAS  Google Scholar 

  112. So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339. https://doi.org/10.1038/nbt1188

    Article  CAS  Google Scholar 

  113. Quiñones GA, Miller SC, Bhattacharyya S, Sobek D, Stephan J-P (2012) Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes. J Cell Biochem 113:2397–2405. https://doi.org/10.1002/jcb.24111

    Article  CAS  Google Scholar 

  114. Kamkaew A, Sun H, England CG, Cheng L, Liu Z, Cai W (2016) Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo. Chem Commun 52:6997–7000. https://doi.org/10.1039/C6CC02764D

    Article  CAS  Google Scholar 

  115. Wu Q, Chu M (2012) Self-illuminating quantum dots for highly sensitive in vivo real-time luminescent mapping of sentinel lymph nodes. Int J Nanomedicine 7:3433–3443. https://doi.org/10.2147/IJN.S30709

    Article  CAS  Google Scholar 

  116. Tsuboi S, Jin T (2017) Bioluminescence resonance energy transfer (BRET)-coupled Annexin V-functionalized quantum dots for near-infrared optical detection of apoptotic cells. Chembiochem 18:2231–2235. https://doi.org/10.1002/cbic.201700486

    Article  CAS  Google Scholar 

  117. Tsuboi S, Jin T (2018) Recombinant protein (luciferase-IgG binding domain) conjugated quantum dots for BRET-coupled near-infrared imaging of epidermal growth factor receptors. Bioconjug Chem 29:1466–1474. https://doi.org/10.1021/acs.bioconjchem.8b00149

    Article  CAS  Google Scholar 

  118. Feugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL (2015) Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnol 13:38. https://doi.org/10.1186/s12951-015-0097-1

    Article  CAS  Google Scholar 

  119. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193. https://doi.org/ 10.1038/ncomms2197

    Article  CAS  Google Scholar 

  120. Kuchimaru T, Suka T, Hirota K, Kadonosono T, Kizaka-Kondoh S (2016) A novel injectable BRET-based in vivo imaging probe for detecting the activity of hypoxia-inducible factor regulated by the ubiquitin-proteasome system. Sci Rep 6:34311. https://doi.org/ 10.1038/srep34311

    Article  CAS  Google Scholar 

  121. Huang X, Li L, Qian H, Dong C, Ren J (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143. https://doi.org/10.1002/anie.200601196

    Article  CAS  Google Scholar 

  122. Zhang N, Francis KP, Prakash A, Ansaldi D (2013) Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med 19:500. https://doi.org/10.1038/nm.3110

    Article  CAS  Google Scholar 

  123. Lee D et al (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765. https://doi.org/10.1038/nmat1983

    Article  CAS  Google Scholar 

  124. Li P, Liu L, Xiao H, Zhang W, Wang L, Tang B (2016) A new polymer Nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J Am Chem Soc 138:2893–2896. https://doi.org/10.1021/jacs.5b11784

    Article  CAS  Google Scholar 

  125. Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32:373. https://doi.org/10.1038/nbt.2838

    Article  CAS  Google Scholar 

  126. Zhen X, Zhang C, Xie C, Miao Q, Lim KL, Pu K (2016) Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 10:6400–6409. https://doi.org/10.1021/acsnano.6b02908

    Article  CAS  Google Scholar 

  127. Xu G et al (2018) Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angew Chem Int Ed 57:3626–3630. https://doi.org/ 10.1002/anie.201712528

    Article  CAS  Google Scholar 

  128. Cai L, Deng L, Huang X, Ren J (2018) Catalytic chemiluminescence polymer dots for ultrasensitive in vivo imaging of intrinsic reactive oxygen species in mice. Anal Chem 90:6929–6935. https://doi.org/10.1021/acs.analchem.8b01188

    Article  CAS  Google Scholar 

  129. Zhang Y et al (2014) Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem 86:3092–3099. https://doi.org/10.1021/ac404201s

    Article  CAS  Google Scholar 

  130. Li D et al (2018) Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mater 30:1705913. https://doi.org/10.1002/adma.201705913

    Article  CAS  Google Scholar 

  131. Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F (2018) Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew Chem Int Ed 57:7518–7522. https://doi.org/10.1002/anie.201802889

    Article  CAS  Google Scholar 

  132. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? a demonstration using familiar stationery products. J Chem Educ 76:1260. https://doi.org/10.1021/ed076p1260

    Article  CAS  Google Scholar 

  133. Huang L, Pedrosa HN, Krauss TD (2004) Ultrafast ground-state recovery of single-walled carbon nanotubes. Phys Rev Lett 93:017403. https://doi.org/10.1103/PhysRevLett.93.017403

    Article  CAS  Google Scholar 

  134. Jones M, Engtrakul C, Metzger WK, Ellingson RJ, Nozik AJ, Heben MJ, Rumbles G (2005) Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys Rev B 71:115426. https://doi.org/10.1103/PhysRevB.71.115426

    Article  CAS  Google Scholar 

  135. Wang F, Dukovic G, Brus LE, Heinz TF (2004) Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys Rev Lett 92:177401. https://doi.org/10.1103/PhysRevLett.92.177401

    Article  CAS  Google Scholar 

  136. Crochet J, Clemens M, Hertel T (2007) Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J Am Chem Soc 129:8058–8059. https://doi.org/ 10.1021/ja071553d

    Article  CAS  Google Scholar 

  137. Carlson LJ, Maccagnano SE, Zheng M, Silcox J, Krauss TD (2007) Fluorescence efficiency of individual carbon nanotubes. Nano Lett 7:3698–3703. https://doi.org/10.1021/nl072014+

    Article  CAS  Google Scholar 

  138. Lefebvre J, Austing DG, Bond J, Finnie P (2006) Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett 6:1603–1608. https://doi.org/10.1021/nl060530e

    Article  CAS  Google Scholar 

  139. Tsyboulski DA, Rocha J-DR, Bachilo SM, Cognet L, Weisman RB (2007) Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett 7:3080–3085. https://doi.org/10.1021/nl071561s

    Article  CAS  Google Scholar 

  140. Miyauchi Y, Iwamura M, Mouri S, Kawazoe T, Ohtsu M, Matsuda K (2013) Brightening of excitons in carbon nanotubes on dimensionality modification. Nat Photonics 7:715. https://doi.org/10.1038/nphoton.2013.179

    Article  CAS  Google Scholar 

  141. Ju S-Y, Kopcha WP, Papadimitrakopoulos F (2009) Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323:1319–1323. https://doi.org/10.1126/science.1166265

    Article  CAS  Google Scholar 

  142. Hou Z, Krauss TD (2017) Photoluminescence brightening of isolated single-walled carbon nanotubes. J Phys Chem Lett 8:4954–4959. https://doi.org/10.1021/acs.jpclett.7b01890

    Article  CAS  Google Scholar 

  143. Gao J, Wu C, Deng D, Wu P, Cai C (2016) Direct synthesis of water-soluble Aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv Healthc Mater 5:2437–2449. https://doi.org/10.1002/adhm.201600545

    Article  CAS  Google Scholar 

  144. Yang T et al (2017) Size-dependent Ag2S Nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 11:1848–1857. https://doi.org/10.1021/acsnano.6b07866

    Article  CAS  Google Scholar 

  145. Wang Y, Yan X-P (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49:3324–3326. https://doi.org/10.1039/C3CC41141A

    Article  CAS  Google Scholar 

  146. Deng D et al (2012) Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J Colloid Interface Sci 367:234–240. https://doi.org/10.1016/j.jcis.2011.09.043

    Article  CAS  Google Scholar 

  147. Freyria FS et al (2017) Near-infrared quantum dot emission enhanced by stabilized self-assembled J-aggregate antennas. Nano Lett 17:7665–7674. https://doi.org/ 10.1021/acs.nanolett.7b03735

    Article  CAS  Google Scholar 

  148. Pokhrel M, Mimun LC, Yust B, Kumar GA, Dhanale A, Tang L, Sardar DK (2014) Stokes emission in GdF3:Nd3+nanoparticles for bioimaging probes. Nanoscale 6:1667–1674

    Article  CAS  Google Scholar 

  149. Qin Q-S et al (2017) Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. Nanoscale 9:4660–4664. https://doi.org/ 10.1039/C7NR00606C

    Article  CAS  Google Scholar 

  150. Rocha U et al (2013) Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 7:1188–1199. https://doi.org/10.1021/nn304373q

    Article  CAS  Google Scholar 

  151. Chen G et al (2012) Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6:2969–2977. https://doi.org/10.1021/nn2042362

    Article  CAS  Google Scholar 

  152. Joo J et al (2016) Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl Phys Lett 108:153111. https://doi.org/10.1063/1.4947084

    Article  CAS  Google Scholar 

  153. Gelloz B, Kojima A, Koshida N (2005) Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing. Appl Phys Lett 87:031107. https://doi.org/10.1063/1.2001136

    Article  CAS  Google Scholar 

  154. Joo J, Cruz JF, Vijayakumar S, Grondek J, Sailor MJ (2014) Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv Funct Mater 24:5688–5694. https://doi.org/10.1002/adfm.201400587

    Article  CAS  Google Scholar 

  155. Ando Y et al (2007) Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2:44. https://doi.org/10.1038/nphoton.2007.251

    Article  Google Scholar 

  156. Niwa K et al (2010) Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 86:1046–1049. https://doi.org/10.1111/j.1751-1097.2010.00777.x

    Article  CAS  Google Scholar 

  157. Ando Y et al (2007) Development of a quantitative bio/chemiluminescence spectrometer determining quantum yields: re-examination of the aqueous luminol chemiluminescence standard. Photochem Photobiol 83:1205–1210. https://doi.org/10.1111/ j.1751-1097.2007.00140.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Martín Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortgies, D.H., Martín Rodríguez, E. (2020). Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_9

Download citation

Publish with us

Policies and ethics