Advertisement

Acquiring, Monitoring, and Recording Data Based on the Industrie 4.0 Standard Geared Toward the Maca Drying Process

  • Gianmarco NagaroEmail author
  • Abel Koc-Lem
  • Leonardo Vinces
  • Julio Ronceros
  • Gustavo Mesones
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

Maca is a natural product that is characterized as a hormonal regulator and food supplement. Produced only in regions with an altitude higher than 3,800 m, which creates great opportunity for its export. For the maca to be exportable it is necessary to apply drying procedures under the condition that it conserves its nutritional properties, whose drying time varies between 12 h and 6 days, according to the current standards. That is, the collection of real-time process data to monitor and control operations is by local network, but not connected in the cloud (IoT) according to Industrie 4.0 standard. Herein, we propose a system is configured by an S7-1200 PLC within a local network and a server, with remote access with user restriction, which allows sensitive process variables, such as absorption temperature and airflow, to be controlled remotely and in real time, such that they would avoid the alteration of the properties of the maca in the drying process. In addition, data from the process can be visualized simultaneously by telemetry and curves of drying the maca from the Web to be able to apply some type of intervention if necessary. Real-time graphs were obtained in the web server and after analyzing them, it was concluded that the data sent to the server are capable of being processed in order to generate a set of results and analyze the information obtained that will help future regimes of drying.

Keywords

Industrie 4.0 IIoT Maca Absorption temperature Drying process Web server 

References

  1. 1.
    Ríos, A.: Metabolismo de ácidos grasos en maca durante el secado en Horno. PUCP (2018)Google Scholar
  2. 2.
    Ministerio de Agricultura www.minagri.gob.pe. Accessed 27 Feb 2019
  3. 3.
    Guzman-Valdivia, C.: Design, Development and Control of a Portable Laboratory for the Chili Drying Process Study. Elsevier, Mexico (2016)CrossRefGoogle Scholar
  4. 4.
    Cerviño, V.: Obtención y Modelado de Isotermas de Sorción de Caramelos “Gummy” de Batata. III Congreso argentino de ingeniería. Argentina (2016)Google Scholar
  5. 5.
    Martínez, A.: Construcción de un Secador Solar. IPL México (2007)Google Scholar
  6. 6.
  7. 7.
    Boyes, H., Hallac, B.: The industrial internet of things (IIoT): an analysis framework, https://reader.elsevier.com/reader/sd/pii/S0166361517307285?token=10DE60A51676883ABDA389A80D17966B2A3F056BCF1CB64A451194A2F47213074DDB294A7DDCAB1083D12B52113530CC. Accessed 11 Mar 2019
  8. 8.
    Anticona, O.S., Ramos, J.: Implementación de un sistema de Supervisión, Control y Adquisición de Datos a Distancia en el Secador de Bandejas para Determinar la Influencia de la Temperatura en el Tiempo de Secado de la Papa. UNT Trujillo (2005)Google Scholar
  9. 9.
    Hermann, H., Pentek, T., Otto, B.: Design Principles for Industrie 4.0 Scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa (2016)Google Scholar
  10. 10.
    Dávila Nava, J.R.: Estudio experimental del efecto de la porosidad de partículas sobre el proceso de secado en un lecho fluidizado a vacío empleando aire, Puebla: Universidad de las Américas Puebla, pp. 51–73 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru

Personalised recommendations