Advertisement

Cellular Automata Based Method for Territories Stratification in Geographic Information Systems

  • Yadian Guillermo Pérez BetancourtEmail author
  • Liset González Polanco
  • Juan Pedro Febles Rodríguez
  • Alcides Cabrera Campos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

The stratification of territories is a powerful tool for the analysis and trend in health studies. An important element in health studies is the relationship established between geographical location and health indicators in correspondence with the first law of Geography. From this approach, the formation of compact strata allows the identification of local and global trends. This paper presents method for territories stratification in Geographic Information Systems. A clustering algorithm based on cellular automata theory is proposed to incorporate the treatment to heterogeneity and spatial dependence. The results obtained from the evaluation of validation indices demonstrates the utility and applicability of the proposal.

Keywords

Cellular learning automata Compact groups Geospatial data Graph clustering Spatial stratification 

References

  1. 1.
    Alegret Rodríguez, M.: Propuestas metodológicas para la incorporación más efectiva del análisis espacial en Ciencias de la Salud. dcmed, Universidad de Ciencias Médicas de Villa Clara (2007). http://tesis.repo.sld.cu/213/
  2. 2.
    de Araújo Nobre, M., Ferro, A., Maló, P.: Adult patient risk stratification using a risk score for periodontitis. J. Clin. Med. 8(3), 307 (2019)Google Scholar
  3. 3.
    Batista Moliner, R., Coutin Marie, G., Feal Cañizares, P., González Cruz, R., Rodríguez Milord, D.: Determinación de estratos para priorizar intervenciones y evaluación en Salud Pública. Revista Cubana de Higiene y Epidemiología 39(1), 32–41 (2001). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1561-30032001000100005&lng=es&nrm=iso&tlng=es
  4. 4.
    Betancourt, Y.G.P., Polanco, L.G., Pérez, R.M., Vega, Y.T.: Stratification of territories based on health indicators on the geographic information systems QGiS. Revista Cubana de Ciencias Informáticas 10(0), 163–175 (2016). http://rcci.uci.cu/?journal=rcci&page=article&op=view&path[]=1374
  5. 5.
    Delgado Acosta, H., González Moreno, L., Valdés Gómez, M., Hernández Malpica, S., Montenegro Calderón, T., Rodríguez Buergo, D.: Estratificación de riesgo de tuberculosis pulmonar en consejos populares del municipio Cienfuegos. MediSur 13(2), 275–284 (2015). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2015000200005
  6. 6.
    Esnaashari, M., Meybodi, M.R.: Irregular cellular learning automata. IEEE Trans. Cybern. 45(8), 1622–1632 (2015). http://ieeexplore.ieee.org/abstract/document/6914602/, 00009CrossRefGoogle Scholar
  7. 7.
    Gewali, L.P., Manandhar, S.: Approaches for clustering polygonal obstacles. In: Latifi, S. (ed.) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol. 558, pp. 887–892. Springer, Heidelberg (2018)Google Scholar
  8. 8.
    Ghavipour, M., Meybodi, M.R.: Irregular cellular learning automata-based algorithm for sampling social networks. Eng. Appl. Artif. Intell. 59, 244–259 (2017)CrossRefGoogle Scholar
  9. 9.
    Langone, R., Mauricio Agudelo, O., De Moor, B., Suykens, J.A.K.: Incremental kernel spectral clustering for online learning of non-stationary data. Neurocomputing 139, 246–260 (2014). http://www.sciencedirect.com/science/article/pii/S0925231214004433
  10. 10.
    Li, Z., Guan, X., Wu, H., Gong, J.: A novel k-means clustering based task decomposition method for distributed vector-based CA models. ISPRS Int. J. Geo-Inf. 6(4), 93 (2017)CrossRefGoogle Scholar
  11. 11.
    de Lope, J., Maravall, D.: Data clustering using a linear cellular automata-based algorithm. Neurocomputing 114, 86–91 (2013). http://www.sciencedirect.com/science/article/pii/S0925231212007904CrossRefGoogle Scholar
  12. 12.
    Miasnikof, P., Shestopaloff, A.Y., Bonner, A.J., Lawryshyn, Y.: A statistical performance analysis of graph clustering algorithms. In: Bonato, A., Prałat, P., Raigorodskii, A. (eds.) Algorithms and Models for the Web Graph. LNCS, pp. 170–184. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  13. 13.
    Moradi, P., Rostami, M.: Integration of graph clustering with ant colony optimization for feature selection. Knowl.-Based Syst. 84, 144–161 (2015). http://www.sciencedirect.com/science/article/pii/S0950705115001458CrossRefGoogle Scholar
  14. 14.
    Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The design science research process: a model for producing and presenting information systems research. In: Proceedings of the First International Conference on Design Science Research in Information Systems and Technology (DESRIST 2006), pp. 83–106. sn (2006)Google Scholar
  15. 15.
    Pérez, C.G., Aguilar, P.A.: Estratificación epidemiológica de riesgo. Revista Archivo Médico de Camagüey 17(6), 762–783 (2013). http://www.medigraphic.com/pdfs/medicocamaguey/amc-2013/amc136l.pdf
  16. 16.
    Pérez Betancourt, Y.G., González Polanco, L., Febles Rodríguez, J.P.: Geospatial data preprocessing algorithm for the stratification of territories. In: Science and Technological Innovation, vol. 2, Chap. Technical sciences. EDACUN—Opuntia Brava (2018)Google Scholar
  17. 17.
    Pérez Betancourt, Y.G., González Polanco, L., Febles Rodríguez, J.P., Cabrera Campos, A.: Proposals for geospatial analysis in health studies. Revista Cubana de Ciencias Informáticas 12(2), 44–57 (2018)Google Scholar
  18. 18.
    Quesada Aguilera, J.A., Quesada Aguilera, E., Rodríguez Socarras, N.: Diferentes enfoques para la estratificación epidemiológica del dengue. Revista Archivo Médico de Camagüey 16(1), 109–123 (2012). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1025-02552012000100014&lng=es&nrm=iso&tlng=es
  19. 19.
    da Costa Resendes, A.P., da Silveira, N.A.P.R., Sabroza, P.C., Souza-Santos, R.: Determination of priority areas for dengue control actions. Revista de saude publica 44(2), 274–282 (2010)CrossRefGoogle Scholar
  20. 20.
    Rezvanian, A., Moradabadi, B., Ghavipour, M., Khomami, M.M.D., Meybodi, M.R.: Learning Automata Approach for Social Networks. Springer, Heidelberg (2019)Google Scholar
  21. 21.
    Santos-Garcia, A., Jacob, M.M., Jones, W.L.: SMOS near-surface salinity stratification under rainy conditions. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9(6), 2493–2499 (2016)CrossRefGoogle Scholar
  22. 22.
    Vahidipour, S.M., Meybodi, M.R., Esnaashari, M.: Adaptive Petri net based on irregular cellular learning automata with an application to vertex coloring problem. Appl. Intell. 46(2), 272–284 (2017)CrossRefGoogle Scholar
  23. 23.
    Wang, S., Lu, J., Gu, X., Weyori, B.A., Yang, J.Y.: Unsupervised discriminant canonical correlation analysis based on spectral clustering. Neurocomputing 171, 425–433 (2016). http://www.sciencedirect.com/science/article/pii/S0925231215008899CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yadian Guillermo Pérez Betancourt
    • 1
    Email author
  • Liset González Polanco
    • 1
  • Juan Pedro Febles Rodríguez
    • 1
  • Alcides Cabrera Campos
    • 1
  1. 1.University of Informatics SciencesHavanaCuba

Personalised recommendations