User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA

  • Yenny P. Flórez
  • Alba J. JerónimoEmail author
  • Mónica E. Castillo
  • Adán A. Gómez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


The Towers of Hanoi is a mathematical problem, which consists of three pegs, and a number “n” of disks of distinct sizes which can slide onto any peg. A cognitive model is a theoretical, empirical and computational representation of mental processes which belong to a cognitive function. A cognitive model generates a human-like performance for developing tasks, correcting errors, using strategies, and acquiring knowledge. A cognitive model constructed in a cognitive architecture is characterized to be runnable and producing specific behaviors. A cognitive architecture is a general-purpose control framework based on scientific theories to specify computational models of human cognitive performance. CARINA is a metacognitive architecture for artificial intelligent agents, obtained from the MISM Metacognitive Meta model. The objective of this paper is to present a cognitive model based on NGOMS-L to solve the algorithm of the Towers of Hanoi that can be runnable in the metacognitive architecture CARINA. The methodology used for the analysis of the cognitive task was: pre-processing stage, processing stage, classification of subjects, description of cognitive task in natural language and finally description of the cognitive task in NGOMS-L. The results obtained showed that of the four subjects originally selected, three of them were able to solve the problem and only one abandoned the problem. In the classification made, a successful and an unsuccessful subject was selected, to represent the cognitive task in natural language and finally express in the NGOMS-L notation the different Goals, Operators, Methods, and Selection Rules.


Towers of Hanoi Cognitive model Cognitive architecture Metacognitive architecture CARINA 


  1. 1.
    Crowley, K., Sliney, A., Pitt, I., Murphy, D.: Evaluating a brain-computer interface to categorise human emotional response. In: 2010 10th IEEE International Conference on Advanced Learning Technologies, pp. 276–278 (2010)Google Scholar
  2. 2.
    Simon, H.A.: Information-processing theory of human problem solving. Handb. Learn. Cogn. Process. 5, 271–295 (1978)Google Scholar
  3. 3.
    Reed, S.K.: The structure of ill-structured (and well-structured) problems revisited. Educ. Psychol. Rev. 28(4), 691–716 (2016)CrossRefGoogle Scholar
  4. 4.
    García, A.B.: Evaluación de estrategias de resolución de problemas. Rev. Educ. 287, 275–286 (1988)Google Scholar
  5. 5.
    Ericsson, K.A., Simon, H.A.: Protocol Analysis: Verbal Reports as Data. The MIT Press, Cambridge (1984)Google Scholar
  6. 6.
    Strube, G.: Cognitive modeling: research logic in cognitive science (2001)CrossRefGoogle Scholar
  7. 7.
    Marewski, J.N., Link, D.: Strategy selection: an introduction to the modeling challenge. Wiley Interdiscip. Rev. Cogn. Sci. 5(1), 39–59 (2014)CrossRefGoogle Scholar
  8. 8.
    Ziefle, M, et al.: A multi-disciplinary approach to ambient assisted living. In: E-Health, Assistive Technologies and Applications for Assisted Living: Challenges and Solutions, pp. 76–93. IGI Global (2011)Google Scholar
  9. 9.
    Fum, D., Del Missier, F., Stocco, A.: The cognitive modeling of human behavior: why a model is (sometimes) better than 10,000 words. Elsevier (2007)Google Scholar
  10. 10.
    Zacarias, M., Magalhaes, R., Caetano, A., Pinto, H.S., Tribolet, J.: Towards organizational self-awareness: an initial architecture and ontology. In: Handbook of Ontologies for Business Interaction, pp. 101–121. IGI Global (2008)Google Scholar
  11. 11.
    Jacko, J.A.: Human Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. CRC Press, Boca Raton (2012)Google Scholar
  12. 12.
    Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Hum. Factors 48(2), 362–380 (2006)CrossRefGoogle Scholar
  13. 13.
    Forsythe, C., Bernard, M.L., Goldsmith, T.E.: Cognitive Systems: Human Cognitive Models in Systems Design. Psychology Press, Hove (2006)Google Scholar
  14. 14.
    Hoffman, R.R.: How can expertise be defined? Implications of research from cognitive psychology. In: Exploring Expertise, pp. 81–100. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Van Rijn, H., Johnson, A., Taatgen, N.: Cognitive user modeling. In: Handbook Human Factors Web Design, 2nd edn. pp. 527–542. CRC Press, Boca Raton (2011)Google Scholar
  16. 16.
    Taylor, B.A., Harris, S.L.: Teaching children with autism to seek information-acquisition of novel information and generalization of responding. J. Appl. Behav. Anal. 28(1), 3–14 (1995)CrossRefGoogle Scholar
  17. 17.
    Carrillo, A.L., Guevara, A., Gálvez, S., Caro, J.L.: Interacción Guiada por Objetivos. In: Actas de INTERACCION, pp. 68–75 (2002)Google Scholar
  18. 18.
    Kieras, D.E.: A guide to GOMS model usability evaluation using GOMSL and GLEAN3, vol. 313. University of Michigan (1999)Google Scholar
  19. 19.
    John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques: comparison and contrast. ACM Trans. Comput. Interact. 3(4), 320–351 (1996)CrossRefGoogle Scholar
  20. 20.
    Forstmann, B.U., Wagenmakers, E.J.: An Introduction to Model-Based Cognitive Neuroscience. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10(2), 141–160 (2009)CrossRefGoogle Scholar
  22. 22.
    Jerónimo, A.J., Caro, M.F., Gómez, A.A.: Formal Specification of cognitive models in CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 614–619 (2018)Google Scholar
  23. 23.
    Olier, A.J., Gómez, A.A., Caro, M.F.: Cognitive modeling process in metacognitive architecture CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 579–585 (2018)Google Scholar
  24. 24.
    Cox, M.T.: Field review: metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005)CrossRefGoogle Scholar
  25. 25.
    Cox, M.T., Oates, T., Perlis D.: Toward an integrated metacognitive architecture. In: 2011 AAAI Fall Symposium Series (2011)Google Scholar
  26. 26.
    Samsonovich, A.V., De Jong, K.A.: Metacognitive architecture for team agents. In: Proceedings of the 25th Annual Meeting of the Cognitive Science Society, pp. 1029–1034 (2003)Google Scholar
  27. 27.
    Caro, M.F., Josvula, D.P., Gómez, A.A., Kennedy, C.M.: Introduction to the CARINA metacognitive architecture. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 530–540 (2018)Google Scholar
  28. 28.
    Jerónimo, A.J., Acosta, K., Caro, M.F., Rodriguez, R.: Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In: V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática (2017)Google Scholar
  29. 29.
    Caro, M.F., Josyula, D.P., Jiménez, J.A., Kennedy, C.M., Cox, M.T.: A domain-specific visual language for modeling metacognition in intelligent systems. Biol. Inspired Cogn. Archit. 13, 75–90 (2015)Google Scholar
  30. 30.
    Huet, N., Mariné, C.: Memory strategies and metamemory knowledge under memory demands change in waiters learners. Eur. J. Psychol. Educ. 12(1), 23–35 (1997)CrossRefGoogle Scholar
  31. 31.
    Cox, M., Oates, T., Perlis, D.: Toward an integrated metacognitive infrastructure. In: 2011 AAAI Fall Symposium, pp. 74–81 (2011)Google Scholar
  32. 32.
    Florez, M.A., Gomez, A.A., Caro, M.F.: Formal representation of introspective reasoning trace of a cognitive function in CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 620–628 (2018)Google Scholar
  33. 33.
    Goela, V., Pullara, D., Grafman, J.: A computational model of frontal lobe dysfunction: working memory and the Tower of Hanoi task. Cogn. Sci. 25(2), 287–313 (2001)CrossRefGoogle Scholar
  34. 34.
    Stewart, T.C. Eliasmith, C.: Neural Cognitive Modelling: A Biologically Constrained Spiking Neuron Model of the Tower of Hanoi Task The Tower of Hanoi (2011)Google Scholar
  35. 35.
    Gunzelmann, G., Anderson, J.R.: An ACT-R model of the evolution of strategy use and problem difficulty. In: Proceedings of the Fourth International Conference on Cognitive Modeling, pp. 109–114 (2001)Google Scholar
  36. 36.
    Jones, R.M., Lebiere, C., Crossman, J.A.: Comparing modeling idioms in ACT-R and Soar. In: Proceedings of the 8th International Conference on Cognitive Modeling, pp. 49–54 (2007)Google Scholar
  37. 37.
    Choi, D., Langley, P.: Evolution of the ICARUS cognitive architecture. Cogn. Syst. Res. 48, 25–38 (2018)CrossRefGoogle Scholar
  38. 38.
    Zdzisław, K., Michał, C.: Embodying intelligence in autonomous and robotic systems with the use of cognitive psychology and motivation theories. In: Advances in Data Analysis with Computational Intelligence Methods, pp. 335–352. Springer, Heidelberg (2018)Google Scholar
  39. 39.
    Wong, J.H., Kirschenbaum, S.S., Peters, S.: Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de CórdobaMonteríaColombia

Personalised recommendations